3,873 research outputs found
Centerscope
Centerscope, formerly Scope, was published by the Boston University Medical Center "to communicate the concern of the Medical Center for the development and maintenance of improved health care in contemporary society.
Resampling images in Fourier domain
When simulating sky images, one often takes a galaxy image defined by
a set of pixelized samples and an interpolation kernel, and then wants to
produce a new sampled image representing this galaxy as it would appear with a
different point-spread function, a rotation, shearing, or magnification, and/or
a different pixel scale. These operations are sometimes only possible, or most
efficiently executed, as resamplings of the Fourier transform of
the image onto a -space grid that differs from the one produced by a
discrete Fourier transform (DFT) of the samples. In some applications it is
essential that the resampled image be accurate to better than 1 part in ,
so in this paper we first use standard Fourier techniques to show that
Fourier-domain interpolation with a wrapped sinc function yields the exact
value of in terms of the input samples and kernel. This operation
scales with image dimension as and can be prohibitively slow, so we next
investigate the errors accrued from approximating the sinc function with a
compact kernel. We show that these approximations produce a multiplicative
error plus a pair of ghost images (in each dimension) in the simulated image.
Standard Lanczos or cubic interpolators, when applied in Fourier domain,
produce unacceptable artifacts. We find that errors part in can be
obtained by (1) 4-fold zero-padding of the original image before executing the
DFT, followed by (2) resampling to the desired grid using
a 6-point, piecewise-quintic interpolant that we design expressly to minimize
the ghosts, then (3) executing the DFT back to domain.Comment: Typographical and one algebraic correction, to appear in PASP March
201
- …