1,129 research outputs found
Epithermal gold and massive sulphide mineralisation in oil impregnated Palaeogene volcanic rocks of Ubekendt Ejland, West Greenland
The discovery in 2002 of a gold mineralised quartz-carbonate vein at Ubekendt Ejland, central West Greenland, yielding 0.6 ppm Au over 0.7 m, led to a reconnaissance sampling project in summer 2003. Most of the accessible quartz-carbonate veins on the south-east coast of the island (Figs 1, 2) were sampled during boat-supported field work. Massive sulphide mineral deposits (Fe-Zn-Pb) were located in the centre of brecciated quartz-carbonate vein systems at several places along the south and south-east coast of the island, and gold anomalies mainly associated with the occurrence of the massive sulphides were identified. Pervasive hydrothermal alteration of the volcanic wall rocks surrounds the quartz-carbonate vein systems, which comprise low-temperature mineral assemblages dominated by dolomite and veined by chalcedony and fibrous silica. Evidence of oil migration into volcaniclastic rocks prior to the intense hydrothermal activity was found in several places in the form of organic carbon, interpreted to be pyrobitumen, that infills pores and cavities in hyaloclastites
Recommended from our members
Highly depleted cratonic mantle in West Greenland extending into diamond stability field in the Proterozoic
This study presents electron microprobe data for dunite xenoliths from a lamprophyre dyke located on the island of Qeqertaa, West Greenland. The minimum age of this dyke is Palaeoproterozoic and it experienced amphibolite facies metamorphism and deformation during that era. The samples consist of nearly 200 xenoliths with a size range of 0.5-8 cm. These dunite xenoliths have olivine Mg#, that range from 80.3 to 94.6 (n = 579) with a mean of 92.6. Orthopyroxene is found in three xenoliths and garnet in five others. The latter suggests the depth of the Qeqertaa xenolith suite to be near the diamond stability-field, which is substantiated by the finding of diamonds in bulk samples of the Qeqertaa dyke. This further indicates the presence of a lithospheric mantle domain dominated by high-Mg# dunite to this depth in Palaeoproterozoic time. Cr-rich spinel, in the 0.1–0.2 mm size range, is found within and between olivine grains in individual xenoliths. These Cr-spinels yield Fe–Mg exchange temperatures of 400–600 °C. However, the presence of intermediate spinel compositions spanning the lower temperature solvus suggests that equilibration temperatures were > 550 °C. Fe3 +#, expressed as 100 × Fe3 +/(Fe3 + + Al + Cr), is shown to be a useful parameter in order to screen for altered spinel (Fe3 +# > 10) with disturbed Mg# and Cr#. The screened spinel data (Fe3 +# < 10) show a distinctly different trend in terms of spinel Cr# versus Mg#, compared to unmetamorphosed xenoliths in Tertiary lavas and dikes from Ubekendt Ejland and Wiedemann Fjord, respectively, also located within the North Atlantic craton. This difference likely reflects amphibolite facies metamorphic resetting of the Qeqertaa xenolith suite by Fe–Mg exchange. Given the similarity of the Qeqertaa xenolith suite with the Ubekendt and Wiedemann suites, in terms of their olivine Mg# and spinel Cr# distribution, high-Mg# dunite is likely to be an important component of the subcontinental lithospheric mantle beneath the North Atlantic craton and appears to have spanned a vertical distance of at least 150 km in this region, even during the Palaeoproterozoic
Peridotite enclaves hosted by Mesoarchaean TTG-suite orthogneisses in the Fiskefjord region of southern West Greenland
AbstractThis study presents bulk-rock major, trace, and platinum-group element data, as well as mineral chemistry for peridotites which form large enclaves (up to 500×1000m) within Mesoarchaean orthogneisses of the Akia terrane in the Fiskefjord region, southern West Greenland. The largest peridotite body, known as Seqi, contains highly fosteritic olivine with a median Mg# of 92.6 and hosts extensive layers of chromitite, which can be traced for tens of metres with thicknesses of up to 30cm. Thinner (<100m thick), but extensive (up to 2000m long) peridotite sheets are associated with coarse norite and orthopyroxenite with distinct cumulate textures in the Amikoq complex, located a few tens of kilometres south of Seqi. Intercalated amphibolites of tholeiitic basaltic composition show complementary geochemical evolution to the peridotites, consistent with igneous crystal fractionation trends. The U-shaped trace element patterns of the peridotites may either reflect the parental melt composition from which these olivine-rich rocks were derived, or alternatively this feature may be the result of melt-rock interaction. Overall, we interpret the Fiskefjord region peridotites to have formed as ultramafic cumulates derived from Archaean high-Mg, low Ca/Al magmas, although their geodynamic setting remains to be established
Simplifying responsible research and innovation – a tool building in societal readiness into research
Researchers and research funders are increasingly seeking to ensure their work is aligned to societal needs and to prevent it from having foreseeable negative impacts, particularly in fast moving and ethically sensitive fields. In this post, Stefan de Jong, Michael J. Bernstein and Ingeborg Meijer, describe their work developing a tool that facilitates researchers and research funders to incorporate responsible research and innovation values into their work
Combat and Warfare in the Early Paleolithic and Medically Unexplained Musculo-Facial Pain in the 21st Century War Veterns and Active-Duty Military Personnel
In a series of recent articles, we
suggest that family dentists, military
dentists and psychiatrists with expertise
in posttraumatic stress disorder (especially in the Veterans Health Administration) are likely to see an increased
number of patients with symptomatic
jaw-clenching and early stages of tooth-
grinding (Bracha et al., 2005). Returning
warfighters and other returnees from
military deployment may be especially
at risk for high rates of clenching-
induced masticatory muscle disorders
at early stages of incisor grinding. The
literature we have recently reviewed
strongly supports the conclusion that
clenching and grinding may primarily
be a manifestation of experiencing
extreme fear or severe chronic distress
(respectively). We have recently
reviewed the clinical and paleoanthropological literature and have noted that
ancestral warfare and ancestral combat,
in the early Paleolithic Environment of
Evolutionary Adaptedness (EEA) may
be a neglected factor explaining the
conservation of the archaic trait of
bite-muscle strengthening. We have
hypothesized that among ancestral
warriors, jaw clenching may have
rapidly strengthened the two primary
muscles involved in biting, the masseter
muscles and the much larger temporalis muscles. The strengthening of
these muscles may have served the
purpose of enabling a stronger, deeper,
and therefore more lethal, defensive
bite for early Paleolithic humans. The
neuroevolutionary perspective presented here may be novel to many dentists. However, it may be useful in
patient education and in preventing
progression from jaw-clenching to
chronic facial pain
Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds
The quantum group version of the Bernstein-Gelfand-Gelfand resolution is used
to construct a double complex of U_q(g)-modules with exact rows and columns.
The locally finite dual of its total complex is identified with the de Rham
complex for quantized irreducible flag manifolds.Comment: LaTeX2e, 44 page
- …