2,197 research outputs found
Quantum Phase Tomography of a Strongly Driven Qubit
The interference between repeated Landau-Zener transitions in a qubit swept
through an avoided level crossing results in Stueckelberg oscillations in qubit
magnetization. The resulting oscillatory patterns are a hallmark of the
coherent strongly-driven regime in qubits, quantum dots and other two-level
systems. The two-dimensional Fourier transforms of these patterns are found to
exhibit a family of one-dimensional curves in Fourier space, in agreement with
recent observations in a superconducting qubit. We interpret these images in
terms of time evolution of the quantum phase of qubit state and show that they
can be used to probe dephasing mechanisms in the qubit.Comment: 5 pgs, 4 fg
Reactions to uncertainty and the accuracy of diagnostic mammography.
BackgroundReactions to uncertainty in clinical medicine can affect decision making.ObjectiveTo assess the extent to which radiologists' reactions to uncertainty influence diagnostic mammography interpretation.DesignCross-sectional responses to a mailed survey assessed reactions to uncertainty using a well-validated instrument. Responses were linked to radiologists' diagnostic mammography interpretive performance obtained from three regional mammography registries.ParticipantsOne hundred thirty-two radiologists from New Hampshire, Colorado, and Washington.MeasurementMean scores and either standard errors or confidence intervals were used to assess physicians' reactions to uncertainty. Multivariable logistic regression models were fit via generalized estimating equations to assess the impact of uncertainty on diagnostic mammography interpretive performance while adjusting for potential confounders.ResultsWhen examining radiologists' interpretation of additional diagnostic mammograms (those after screening mammograms that detected abnormalities), a 5-point increase in the reactions to uncertainty score was associated with a 17% higher odds of having a positive mammogram given cancer was diagnosed during follow-up (sensitivity), a 6% lower odds of a negative mammogram given no cancer (specificity), a 4% lower odds (not significant) of a cancer diagnosis given a positive mammogram (positive predictive value [PPV]), and a 5% higher odds of having a positive mammogram (abnormal interpretation).ConclusionMammograms interpreted by radiologists who have more discomfort with uncertainty have higher likelihood of being recalled
Iron isotope fractionation in soil and graminaceous crops after 100âyears of liming in the longâterm agricultural experimental site at BerlinâDahlem, Germany
Sustainable arable cropping relies on repeated liming. Yet, the associated increase in soil pH can reduce the availability of iron (Fe) to plants. We hypothesized that repeated liming, but not pedogenic processes such as lessivage (i.e., translocation of clay particles), alters the Fe cycle in Luvisol soil, thereby affecting Fe isotope composition in soils and crops. Hence, we analysed Fe concentrations and isotope compositions in soil profiles and winter rye from the long-term agricultural experimental site in Berlin-Dahlem, Germany, where a controlled liming trial with three field replicates per treatment has been conducted on Albic Luvisols since 1923. Heterogeneity in subsoil was observed at this site for Fe concentration but not for Fe isotope composition. Lessivage had not affected Fe isotope composition in the soil profiles. The results also showed that almost 100âyears of liming lowered the concentration of the HCl-extractable Fe that was potentially available for plant uptake in the surface soil (0â15âcm) from 1.03 (standard error (SE) 0.03) to 0.94 (SE 0.01) gâkgâ1. This HCl-extractable Fe pool contained isotopically lighter Fe (ÎŽ56Fe = â0.05 to â0.29â°) than the bulk soil (ÎŽ56Fe = â0.08 to 0.08â°). However, its Fe isotope composition was not altered by the long-term lime application. Liming resulted in relatively lower Fe concentrations in the roots of winter rye. In addition, liming led to a heavier Fe isotope composition of the whole plants compared with those grown in the non-limed plots (ÎŽ56FeWholePlant_â+âLime = â0.12â°, SE 0.03 vs. ÎŽ56FeWholePlant_-Lime = â0.21â°, SE 0.01). This suggests that the elevated soil pH (increased by one unit due to liming) promoted the Fe uptake strategy through complexation of Fe(III) from the rhizosphere, which favoured heavier Fe isotopes. Overall, the present study showed that liming and a related increase in pH did not affect the Fe isotope compositions of the soil, but may influence the Fe isotope composition of plants grown in the soil if they alter their Fe uptake strategy upon the change of Fe availability.Bundesministerium fĂŒr Bildung und Forschung
http://dx.doi.org/10.13039/50110000234
Diffusion Tensor Imaging of Dolphin Brains Reveals Direct Auditory Pathway to Temporal Lobe
The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetesâ auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of âassociative0 regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin (Delphinus delphis) and a pantropical dolphin (Stenella attenuata) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of postmortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species
- âŠ