204 research outputs found

    Shedding new light on genetic dark matter

    Get PDF
    Discoveries from genome-wide association studies have contributed to our knowledge of the genetic etiology of many complex diseases. However, these account for only a small fraction of each disease's heritability. Here, we comment on approaches currently available to uncover more of the genetic 'dark matter,' including an approach introduced recently by Naukkarinen and colleagues. These authors propose a method for distinguishing between gene expression driven by genetic variation and that driven by non-genetic factors. This dichotomy allows investigators to focus statistical tests and further molecular analyses on a smaller set of genes, thereby discovering new genetic variation affecting risk for disease. We need more methods like this one if we are to shed a powerful light on dark matter. By enhancing our understanding of molecular genetic etiology, such methods will help us to understand disease processes better and will advance the promise of personalized medicine

    GemTools: A fast and efficient approach to estimating genetic ancestry

    Full text link
    To uncover the genetic basis of complex disease, individuals are often measured at a large number of genetic variants (usually SNPs) across the genome. GemTools provides computationally efficient tools for modeling genetic ancestry based on SNP genotypes. The main algorithm creates an eigenmap based on genetic similarities, and then clusters subjects based on their map position. This process is continued iteratively until each cluster is relatively homogeneous. For genetic association studies, GemTools matches cases and controls based on genetic similarity.Comment: 5 pages, 1 figur

    Genetics in psychiatry: common variant association studies.

    Get PDF
    Many psychiatric conditions and traits are associated with significant heritability. Genetic risk for psychiatric conditions encompass rare variants, identified due to major effect, as well as common variants, the latter analyzed by association analyses. We review guidelines for common variant association analyses, undertaking after assessing evidence of heritability. We highlight the importance of: suitably large sample sizes; an experimental design that controls for ancestry; careful data cleaning; correction for multiple testing; small P values for positive findings; assessment of effect size for positive findings; and, inclusion of an independent replication sample. We also note the importance of a critical discussion of any prior findings, biological follow-up where possible, and a means of accessing the raw data.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Refining genetically inferred relationships using treelet covariance smoothing

    Full text link
    Recent technological advances coupled with large sample sets have uncovered many factors underlying the genetic basis of traits and the predisposition to complex disease, but much is left to discover. A common thread to most genetic investigations is familial relationships. Close relatives can be identified from family records, and more distant relatives can be inferred from large panels of genetic markers. Unfortunately these empirical estimates can be noisy, especially regarding distant relatives. We propose a new method for denoising genetically - inferred relationship matrices by exploiting the underlying structure due to hierarchical groupings of correlated individuals. The approach, which we call Treelet Covariance Smoothing, employs a multiscale decomposition of covariance matrices to improve estimates of pairwise relationships. On both simulated and real data, we show that smoothing leads to better estimates of the relatedness amongst distantly related individuals. We illustrate our method with a large genome-wide association study and estimate the "heritability" of body mass index quite accurately. Traditionally heritability, defined as the fraction of the total trait variance attributable to additive genetic effects, is estimated from samples of closely related individuals using random effects models. We show that by using smoothed relationship matrices we can estimate heritability using population-based samples. Finally, while our methods have been developed for refining genetic relationship matrices and improving estimates of heritability, they have much broader potential application in statistics. Most notably, for error-in-variables random effects models and settings that require regularization of matrices with block or hierarchical structure.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS598 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease

    Get PDF
    Abstract Background Progressive supranuclear palsy (PSP) is a neurodegenerative disorder pathologically characterized by intracellular tangles of hyperphosphorylated tau protein distributed throughout the neocortex, basal ganglia, and brainstem. A genome-wide association study identified EIF2AK3 as a risk factor for PSP. EIF2AK3 encodes PERK, part of the endoplasmic reticulum’s (ER) unfolded protein response (UPR). PERK is an ER membrane protein that senses unfolded protein accumulation within the ER lumen. Recently, several groups noted UPR activation in Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis, multiple system atrophy, and in the hippocampus and substantia nigra of PSP subjects. Here, we evaluate UPR PERK activation in the pons, medulla, midbrain, hippocampus, frontal cortex and cerebellum in subjects with PSP, AD, and in normal controls. Results We found UPR activation primarily in disease-affected brain regions in both disorders. In PSP, the UPR was primarily activated in the pons and medulla and to a much lesser extent in the hippocampus. In AD, the UPR was extensively activated in the hippocampus. We also observed UPR activation in the hippocampus of some elderly normal controls, severity of which positively correlated with both age and tau pathology but not with Aβ plaque burden. Finally, we evaluated EIF2AK3 coding variants that influence PERK activation. We show that a haplotype associated with increased PERK activation is genetically associated with increased PSP risk. Conclusions The UPR is activated in disease affected regions in PSP and the genetic evidence shows that this activation increases risk for PSP and is not a protective response. </jats:sec
    corecore