11,737 research outputs found
Tunable reflection minima of nanostructured antireflective surfaces
Broadband antireflection schemes for silicon surfaces based on the moth-eye principle and comprising arrays of subwavelength-scale pillars are applicable to solar cells, photodetectors, and stealth technologies and can exhibit very low reflectances. We show that rigorous coupled wave analysis can be used to accurately model the intricate reflectance behavior of these surfaces and so can be used to explore the effects of variations in pillar height, period, and shape. Low reflectance regions are identified, the extent of which are determined by the shape of the pillars. The wavelengths over which these low reflectance regions operate can be shifted by altering the period of the array. Thus the subtle features of the reflectance spectrum of a moth-eye array can be tailored for optimum performance for the input spectrum of a specific application
Non-Locality of Experimental Qutrit Pairs
The insight due to John Bell that the joint behavior of individually measured
entangled quantum systems cannot be explained by shared information remains a
mystery to this day. We describe an experiment, and its analysis, displaying
non-locality of entangled qutrit pairs. The non-locality of such systems, as
compared to qubit pairs, is of particular interest since it potentially opens
the door for tests of bipartite non-local behavior independent of probabilistic
Bell inequalities, but of deterministic nature
Distribution and Diversity of Archaeal and Bacterial Ammonia Oxidizers in Salt Marsh Sediments
Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP were equally distributed between the water column/sediment and soil/sediment clades, while AOA amoA sequences at SAS were primarily affiliated with the water column/sediment clade. At all three site types, AOA were always more abundant than β-AOB based on quantitative PCR of amoA genes. At some sites, we detected 109 AOA amoA gene copies g of sediment−1. Ratios of AOA to β-AOB varied over 2 orders of magnitude among sites and sampling dates. Nevertheless, abundances of AOA and β-AOB amoA genes were highly correlated. Abundance of 16S rRNA genes affiliated with Nitrosopumilus maritimus, Crenarchaeota group I.1b, and pSL12 were positively correlated with AOA amoA abundance, but ratios of amoA to 16S rRNA genes varied among sites. We also observed a significant effect of pH on AOA abundance and a significant salinity effect on both AOA and β-ΑΟΒ abundance. Our results expand the distribution of AOA to salt marshes, and the high numbers of AOA at some sites suggest that salt marsh sediments serve as an important habitat for AOA
A study on vortex flow control on inlet distortion in the re-engined 727-100 center inlet duct using computational fluid dynamics
Computational fluid dynamics was used to investigate the management of inlet distortion by the introduction of discrete vorticity sources at selected locations in the inlet for the purpose of controlling secondary flow. These sources of vorticity were introduced by means of vortex generators. A series of design observations were made concerning the importance of various vortex generator design parameters in minimizing engine face circumferential distortion. The study showed that vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence on the engine face distortion, over and above the initial geometry and arrangement of the generators. The installed vortex generator performance was found to be a function of three categories of variables: the inflow conditions, the aerodynamic characteristics associated with the inlet duct, and the design parameters related to the geometry, arrangement, and placement of the vortex generators within the outlet duct itself
Optical Study of the Free Carrier Response of LaTiO3/SrTiO3 Superlattices
We used infrared spectroscopic ellipsometry to investigate the electronic
properties of LaTiO3/SrTiO3 superlattices (SLs). Our results indicated that,
independent of the SL periodicity and individual layer-thickness, the SLs
exhibited a Drude metallic response with sheet carrier density per interface
~3x10^14 cm^-2. This is probably due to the leakage of d-electrons at
interfaces from the Mott insulator LaTiO3 to the band insulator SrTiO3. We
observed a carrier relaxation time ~ 35 fs and mobility ~ 35 cm^2V^-1s^-1 at 10
K, and an unusual temperature dependence of carrier density that was attributed
to the dielectric screening of quantum paraelectric SrTiO3.Comment: 4 pages, 4 figure
Magnetotransport of lanthanum doped RuSr2GdCu2O8 - the role of gadolinium
Strongly underdoped RuSr_1.9La_0.1GdCu_2O_8 has been comprehensively studied
by dc magnetization, microwave measurements, magnetoresistivity and Hall
resistivity in fields up to 9 T and temperatures down to 1.75 K. Electron
doping by La reduces the hole concentration in the CuO2 planes and completely
suppresses superconductivity. Microwave absorption, dc resistivity and ordinary
Hall effect data indicate that the carrier concentration is reduced and a
semiconductor-like temperature dependence is observed. Two magnetic ordering
transitions are observed. The ruthenium sublattice orders antiferromagnetically
at 155 K for low applied magnetic field and the gadolinium sublattice
antiferromagnetically orders at 2.8 K. The magnetoresistivity exhibits a
complicated temperature dependence due to the combination of the two magnetic
orderings and spin fluctuations. It is shown that the ruthenium magnetism
influences the conductivity in the RuO2 layers while the gadolinium magnetism
influences the conductivity in the CuO2 layers. The magnetoresistivity is
isotropic above 4 K, but it becomes anisotropic when gadolinium orders
antiferromagnetically.Comment: 7 pages, 9 figures, submitted to European Physical Journal
Optical response of ferromagnetic YTiO_3 studied by spectral ellipsometry
We have studied the temperature dependence of spectroscopic ellipsometry
spectra of an electrically insulating, nearly stoichiometric YTiO_3 single
crystal with ferromagnetic Curie temperature T_C = 30 K. The optical response
exhibits a weak but noticeable anisotropy. Using a classical dispersion
analysis, we identify three low-energy optical bands at 2.0, 2.9, and 3.7 eV.
Although the optical conductivity spectra are only weakly temperature dependent
below 300 K, we are able to distinguish high- and low-temperature regimes with
a distinct crossover point around 100 K. The low-temperature regime in the
optical response coincides with the temperature range in which significant
deviations from Curie-Weiss mean field behavior are observed in the
magnetization. Using an analysis based on a simple superexchange model, the
spectral weight rearrangement can be attributed to intersite d_i^1d_j^1
\longrightarrow d_i^2d_j^0 optical transitions. In particular, Kramers-Kronig
consistent changes in optical spectra around 2.9 eV can be associated with the
high-spin-state (^3T_1) optical transition. This indicates that other
mechanisms, such as weakly dipole-allowed p-d transitions and/or
exciton-polaron excitations, can contribute significantly to the optical band
at 2 eV. The recorded optical spectral weight gain of 2.9 eV optical band is
significantly suppressed and anisotropic, which we associate with complex
spin-orbit-lattice phenomena near ferromagnetic ordering temperature in YTiO_3
Slow Rise and Partial Eruption of a Double-Decker Filament. I Observations and Interpretation
We study an active-region dextral filament which was composed of two branches
separated in height by about 13 Mm. This "double-decker" configuration
sustained for days before the upper branch erupted with a GOES-class M1.0 flare
on 2010 August 7. Analyzing this evolution, we obtain the following main
results. 1) During hours before the eruption, filament threads within the lower
branch were observed to intermittently brighten up, lift upward, and then merge
with the upper branch. The merging process contributed magnetic flux and
current to the upper branch, resulting in its quasi-static ascent. 2) This
transfer might serve as the key mechanism for the upper branch to lose
equilibrium by reaching the limiting flux that can be stably held down by the
overlying field or by reaching the threshold of the torus instability. 3) The
erupting branch first straightened from a reverse S shape that followed the
polarity inversion line and then writhed into a forward S shape. This shows a
transfer of left-handed helicity in a sequence of writhe-twist-writhe. The fact
that the initial writhe is converted into the twist of the flux rope excludes
the helical kink instability as the trigger process of the eruption, but
supports the occurrence of the instability in the main phase, which is indeed
indicated by the very strong writhing motion. 4) A hard X-ray sigmoid, likely
of coronal origin, formed in the gap between the two original filament branches
in the impulsive phase of the associated flare. This supports a model of
transient sigmoids forming in the vertical flare current sheet. 5) Left-handed
magnetic helicity is inferred for both branches of the dextral filament. 6) Two
types of force-free magnetic configurations are compatible with the data, a
double flux rope equilibrium and a single flux rope situated above a loop
arcade
Spin-controlled Mott-Hubbard bands in LaMnO_3 probed by optical ellipsometry
Spectral ellipsometry has been used to determine the dielectric function of
an untwinned crystal of LaMnO_3 in the spectral range 0.5-5.6 eV at
temperatures 50 K < T < 300 K. A pronounced redistribution of spectral weight
is found at the Neel temperature T_N = 140 K. The anisotropy of the spectral
weight transfer matches the magnetic ordering pattern. A superexchange model
quantitatively describes spectral weight transfer induced by spin correlations.
This analysis implies that the lowest-energy transitions around 2 eV are
intersite d-d transitions, and that LaMnO_3 is a Mott-Hubbard insulator.Comment: 4 pages, 4 figure
- …