1 research outputs found

    A single atom change turns insulating saturated wires into molecular conductors

    Get PDF
    We present an efficient strategy to modulate tunnelling in molecular junctions by changing the tunnelling decay coefficient, β, by terminal-atom substitution which avoids altering the molecular backbone. By varying X = H, F, Cl, Br, I in junctions with S(CH2)(10-18)X, current densities (J) increase >4 orders of magnitude, creating molecular conductors via reduction of β from 0.75 to 0.25 Å−1. Impedance measurements show tripled dielectric constants (εr) with X = I, reduced HOMO-LUMO gaps and tunnelling-barrier heights, and 5-times reduced contact resistance. These effects alone cannot explain the large change in β. Density functional theory shows highly localized, X-dependent potential drops at the S(CH2)nX// electrode interface that modifies the tunnelling barrier shape. Commonly-used tunnelling models neglect localized potential drops and changes in εr
    corecore