164 research outputs found

    Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    Get PDF
    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

    Interactive manipulation of microparticles in an octagonal sonotweezer

    Get PDF
    An ultrasonic device for micro-patterning and precision manipulation of micrometre-scale particles is demonstrated. The device is formed using eight piezoelectric transducers shaped into an octagonal cavity. By exciting combinations of transducers simultaneously, with a controlled phase delay between them, different acoustic landscapes can be created, patterning micro-particles into lines, squares, and more complex shapes. When operated with all eight transducers the device can, with appropriate phase control, manipulate the two dimensional acoustic pressure gradient; it thus has the ability to position and translate a single tweezing zone to different locations on a surface in a precise and programmable manner

    Dynamic acoustic field activated cell separation (DAFACS)

    Get PDF
    Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for highthroughput, label-free, high recovery, cell and particle separation and isolation in regenerative medicine. Here, we demonstrate a novel approach utilizing a dynamic acoustic field that is capable of separating an arbitrary size range of cells. We first demonstrate the method for the separation of particles with different diameters between 6 and 45 μm and secondly particles of different densities in a heterogeneous medium. The dynamic acoustic field is then used to separate dorsal root ganglion cells. The shearless, label-free and low damage characteristics make this method of manipulation particularly suited for biological applications. Advantages of using a dynamic acoustic field for the separation of cells include its inherent safety and biocompatibility, the possibility to operate over large distances (centimetres), high purity (ratio of particle population, up to 100%), and high efficiency (ratio of separated particles over total number of particles to separate, up to 100%)

    Theoretical framework of radiation force in surface acoustic waves for modulated particle sorting

    Get PDF
    Sorting specific target entities from sample mixtures is commonly used in many macroscale laboratory processing, such as disease diagnosis or treatment. Downscaling of sorting systems enables less laboratory space and fewer quantities of sample and reagent. Such lab-on-a-chip devices can perform separation functions using passive or active sorting methods. Such a method, acoustic sorting, when used in microfluidics, offers contactless, label-free, non-invasive manipulation of target cells or particles and is therefore the topic of active current research. Our phase-modulated sorting technique complements traditional time-of-flight techniques and offers higher sensitivity separation using a periodic signal. By cycling of this periodic signal, the target entities are gradually displaced compared to the background debris, thereby achieving sorting. In this paper, we extend the knowledge on phase-modulated sorting techniques. Firstly, using numerical simulations, we confirm the sorting role of our proposed primary acoustic radiation force within surface wave devices. Secondly, a threefold agreement between analytical, numerical and experimental sorting trajectories is presented

    A deterministic method for particle sorting by dynamic acoustic fields

    Get PDF
    This paper investigates the dynamic acoustic sorting method from a theoretical perspective. Analytical equations of motion and numerical simulations have been used to optimize parameters for sorting various particle mixtures. The effect of changes in field parameters as frequency or voltage on efficient sorting has been investigated. Experiments have been carried out to verify theoretical findings

    Numerical determination of the secondary acoustic radiation force on a small sphere in a plane standing wave field

    Get PDF
    Two numerical methods based on the Finite Element Method are presented for calculating the secondary acoustic radiation force between interacting spherical particles. The first model only considers the acoustic waves scattering off a single particle, while the second model includes re-scattering effects between the two interacting spheres. The 2D axisymmetric simplified model combines the Gor’kov potential approach with acoustic simulations to find the interacting forces between two small compressible spheres in an inviscid fluid. The second model is based on 3D simulations of the acoustic field and uses the tensor integral method for direct calculation of the force. The results obtained by both models are compared with analytical equations, showing good agreement between them. The 2D and 3D models take, respectively, seconds and tens of seconds to achieve a convergence error of less than 1%. In comparison with previous models, the numerical methods presented herein can be easily implemented in commercial Finite Element software packages, where surface integrals are available, making it a suitable tool for investigating interparticle forces in acoustic manipulation devices

    Theoretical Framework of Radiation Force in Surface Acoustic Waves for Modulated Particle Sorting

    Get PDF
    Sorting specific target entities from sample mixtures is commonly used in many macroscale laboratory processing, such as disease diagnosis or treatment. Downscaling of sorting systems enables less laboratory space and fewer quantities of sample and reagent. Such lab-on-a-chip devices can perform separation functions using passive or active sorting methods. Such a method, acoustic sorting, when used in microfluidics, offers contactless, label-free, non-invasive manipulation of target cells or particles and is therefore the topic of active current research. Our phase-modulated sorting technique complements traditional time-of-flight techniques and offers higher sensitivity separation using a periodic signal. By cycling of this periodic signal, the target entities are gradually displaced compared to the background debris, thereby achieving sorting. In this paper, we extend the knowledge on phase-modulated sorting techniques. Firstly, using numerical simulations, we confirm the sorting role of our proposed primary acoustic radiation force within surface wave devices. Secondly, a threefold agreement between analytical, numerical and experimental sorting trajectories is presented

    Particle separation by phase modulated surface acoustic waves

    Get PDF
    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution
    • …
    corecore