25 research outputs found
Subsequent Surgery After Revision Anterior Cruciate Ligament Reconstruction: Rates and Risk Factors From a Multicenter Cohort
BACKGROUND: While revision anterior cruciate ligament reconstruction (ACLR) can be performed to restore knee stability and improve patient activity levels, outcomes after this surgery are reported to be inferior to those after primary ACLR. Further reoperations after revision ACLR can have an even more profound effect on patient satisfaction and outcomes. However, there is a current lack of information regarding the rate and risk factors for subsequent surgery after revision ACLR.
PURPOSE: To report the rate of reoperations, procedures performed, and risk factors for a reoperation 2 years after revision ACLR.
STUDY DESIGN: Case-control study; Level of evidence, 3.
METHODS: A total of 1205 patients who underwent revision ACLR were enrolled in the Multicenter ACL Revision Study (MARS) between 2006 and 2011, composing the prospective cohort. Two-year questionnaire follow-up was obtained for 989 patients (82%), while telephone follow-up was obtained for 1112 patients (92%). If a patient reported having undergone subsequent surgery, operative reports detailing the subsequent procedure(s) were obtained and categorized. Multivariate regression analysis was performed to determine independent risk factors for a reoperation.
RESULTS: Of the 1112 patients included in the analysis, 122 patients (11%) underwent a total of 172 subsequent procedures on the ipsilateral knee at 2-year follow-up. Of the reoperations, 27% were meniscal procedures (69% meniscectomy, 26% repair), 19% were subsequent revision ACLR, 17% were cartilage procedures (61% chondroplasty, 17% microfracture, 13% mosaicplasty), 11% were hardware removal, and 9% were procedures for arthrofibrosis. Multivariate analysis revealed that patients aged <20 years had twice the odds of patients aged 20 to 29 years to undergo a reoperation. The use of an allograft at the time of revision ACLR (odds ratio [OR], 1.79; P = .007) was a significant predictor for reoperations at 2 years, while staged revision (bone grafting of tunnels before revision ACLR) (OR, 1.93; P = .052) did not reach significance. Patients with grade 4 cartilage damage seen during revision ACLR were 78% less likely to undergo subsequent operations within 2 years. Sex, body mass index, smoking history, Marx activity score, technique for femoral tunnel placement, and meniscal tearing or meniscal treatment at the time of revision ACLR showed no significant effect on the reoperation rate.
CONCLUSION: There was a significant reoperation rate after revision ACLR at 2 years (11%), with meniscal procedures most commonly involved. Independent risk factors for subsequent surgery on the ipsilateral knee included age <20 years and the use of allograft tissue at the time of revision ACLR
Effect of Graft Choice on the Outcome of Revision Anterior Cruciate Ligament Reconstruction in the Multicenter ACL Revision Study (MARS) Cohort
Most surgeons believe that graft choice for ACL reconstruction is an important factor related to outcome. Although graft choice may be limited in the revision setting based on previously used grafts, it is still felt to be important
Association Between Graft Choice and 6-Year Outcomes of Revision Anterior Cruciate Ligament Reconstruction in the MARS Cohort
BackgroundAlthough graft choice may be limited in the revision setting based on previously used grafts, most surgeons believe that graft choice for anterior cruciate ligament (ACL) reconstruction is an important factor related to outcome.HypothesisIn the ACL revision setting, there would be no difference between autograft and allograft in rerupture rate and patient-reported outcomes (PROs) at 6-year follow-up.Study designCohort study; Level of evidence, 2.MethodsPatients who had revision surgery were identified and prospectively enrolled in this cohort study by 83 surgeons over 52 sites. Data collected included baseline characteristics, surgical technique and pathology, and a series of validated PRO measures. Patients were followed up at 6 years and asked to complete the identical set of PRO instruments. Incidence of additional surgery and reoperation because of graft failure were also recorded. Multivariable regression models were used to determine the predictors (risk factors) of PROs, graft rerupture, and reoperation at 6 years after revision surgery.ResultsA total of 1234 patients including 716 (58%) men were enrolled. A total of 325 (26%) underwent revision using a bone-patellar tendon-bone (BTB) autograft; 251 (20%), soft tissue autograft; 289 (23%), BTB allograft; 302 (25%), soft tissue allograft; and 67 (5%), other graft. Questionnaires and telephone follow-up for subsequent surgery information were obtained for 809 (66%) patients, while telephone follow-up was only obtained for an additional 128 patients for the total follow-up on 949 (77%) patients. Graft choice was a significant predictor of 6-year Marx Activity Rating Scale scores (P = .024). Specifically, patients who received a BTB autograft for revision reconstruction had higher activity levels than did patients who received a BTB allograft (odds ratio [OR], 1.92; 95% CI, 1.25-2.94). Graft rerupture was reported in 5.8% (55/949) of patients by their 6-year follow-up: 3.5% (16/455) of patients with autografts and 8.4% (37/441) of patients with allografts. Use of a BTB autograft for revision resulted in patients being 4.2 times less likely to sustain a subsequent graft rupture than if a BTB allograft were utilized (P = .011; 95% CI, 1.56-11.27). No significant differences were found in graft rerupture rates between BTB autograft and soft tissue autografts (P = .87) or between BTB autografts and soft tissue allografts (P = .36). Use of an autograft was found to be a significant predictor of having fewer reoperations within 6 years compared with using an allograft (P = .010; OR, 0.56; 95% CI, 0.36-0.87).ConclusionBTB and soft tissue autografts had a decreased risk in graft rerupture compared with BTB allografts. BTB autografts were associated with higher activity level than were BTB allografts at 6 years after revision reconstruction. Surgeons and patients should consider this information when choosing a graft for revision ACL reconstruction
Recommended from our members
Descriptive Characteristics and Outcomes of Patients Undergoing Revision Anterior Cruciate Ligament Reconstruction With and Without Tunnel Bone Grafting
BackgroundLytic or malpositioned tunnels may require bone grafting during revision anterior cruciate ligament reconstruction (rACLR) surgery. Patient characteristics and effects of grafting on outcomes after rACLR are not well described.PurposeTo describe preoperative characteristics, intraoperative findings, and 2-year outcomes for patients with rACLR undergoing bone grafting procedures compared with patients with rACLR without grafting.Study designCohort study; Level of evidence, 3.MethodsA total of 1234 patients who underwent rACLR were prospectively enrolled between 2006 and 2011. Baseline revision and 2-year characteristics, surgical technique, pathology, treatment, and patient-reported outcome instruments (International Knee Documentation Committee [IKDC], Knee injury and Osteoarthritis Outcome Score [KOOS], Western Ontario and McMaster Universities Osteoarthritis Index, and Marx Activity Rating Scale [Marx]) were collected, as well as subsequent surgery information, if applicable. The chi-square and analysis of variance tests were used to compare group characteristics.ResultsA total of 159 patients (13%) underwent tunnel grafting-64 (5%) patients underwent 1-stage and 95 (8%) underwent 2-stage grafting. Grafting was isolated to the femur in 31 (2.5%) patients, the tibia in 40 (3%) patients, and combined in 88 patients (7%). Baseline KOOS Quality of Life (QoL) and Marx activity scores were significantly lower in the 2-stage group compared with the no bone grafting group (P≤ .001). Patients who required 2-stage grafting had more previous ACLRs (P < .001) and were less likely to have received a bone-patellar tendon-bone or a soft tissue autograft at primary ACLR procedure (P≤ .021) compared with the no bone grafting group. For current rACLR, patients undergoing either 1-stage or 2-stage bone grafting were more likely to receive a bone-patellar tendon-bone allograft (P≤ .008) and less likely to receive a soft tissue autograft (P≤ .003) compared with the no bone grafting group. At 2-year follow-up of 1052 (85%) patients, we found inferior outcomes in the 2-stage bone grafting group (IKDC score = 68; KOOS QoL score = 44; KOOS Sport/Recreation score = 65; and Marx activity score = 3) compared with the no bone grafting group (IKDC score = 77; KOOS QoL score = 63; KOOS Sport/Recreation score = 75; and Marx activity score = 7) (P≤ .01). The 1-stage bone graft group did not significantly differ compared with the no bone grafting group.ConclusionTunnel bone grafting was performed in 13% of our rACLR cohort, with 8% undergoing 2-stage surgery. Patients treated with 2-stage grafting had inferior baseline and 2-year patient-reported outcomes and activity levels compared with patients not undergoing bone grafting. Patients treated with 1-stage grafting had similar baseline and 2-year patient-reported outcomes and activity levels compared with patients not undergoing bone grafting
Multirater Agreement of the Causes of Anterior Cruciate Ligament Reconstruction Failure
BackgroundAnterior cruciate ligament (ACL) reconstruction failure occurs in up to 10% of cases. Technical errors are considered the most common cause of graft failure despite the absence of validated studies. Limited data are available regarding the agreement among orthopaedic surgeons regarding the causes of primary ACL reconstruction failure and accuracy of graft tunnel placement.HypothesisExperienced knee surgeons have a high level of interobserver reliability in the agreement about the causes of primary ACL reconstruction failure, anatomic graft characteristics, and tunnel placement.Study designCohort study (diagnosis); Level of evidence, 3.MethodsTwenty cases of revision ACL reconstruction were randomly selected from the Multicenter ACL Revision Study (MARS) database. Each case included the patient's history, standardized radiographs, and a concise 30-second arthroscopic video taken at the time of revision demonstrating the graft remnant and location of the tunnel apertures. All 20 cases were reviewed by 10 MARS surgeons not involved with the primary surgery. Each surgeon completed a 2-part questionnaire dealing with each surgeon's training and practice, as well as the placement of the femoral and tibial tunnels, condition of the primary graft, and the surgeon's opinion as to the causes of graft failure. Interrater agreement was determined for each question with the kappa coefficient and the prevalence-adjusted, bias-adjusted kappa (PABAK).ResultsThe 10 reviewers have been in practice an average of 14 years and have performed at least 25 ACL reconstructions per year, and 9 were fellowship trained in sports medicine. There was wide variability in agreement among knee experts as to the specific causes of ACL graft failure. When participants were specifically asked about technical error as the cause for failure, interobserver agreement was only slight (PABAK = 0.26). There was fair overall agreement on ideal femoral tunnel placement (PABAK = 0.55) but only slight agreement on whether a femoral tunnel was too anterior (PABAK = 0.24) and fair agreement on whether it was too vertical (PABAK = 0.46). There was poor overall agreement for ideal tibial tunnel placement (PABAK = 0.17).ConclusionThis study suggests that more objective criteria are needed to accurately determine the causes of primary ACL graft failure as well as the ideal femoral and tibial tunnel placement in patients undergoing revision ACL reconstruction
Recommended from our members
Multirater Agreement of the Causes of Anterior Cruciate Ligament Reconstruction Failure
BackgroundAnterior cruciate ligament (ACL) reconstruction failure occurs in up to 10% of cases. Technical errors are considered the most common cause of graft failure despite the absence of validated studies. Limited data are available regarding the agreement among orthopaedic surgeons regarding the causes of primary ACL reconstruction failure and accuracy of graft tunnel placement.HypothesisExperienced knee surgeons have a high level of interobserver reliability in the agreement about the causes of primary ACL reconstruction failure, anatomic graft characteristics, and tunnel placement.Study designCohort study (diagnosis); Level of evidence, 3.MethodsTwenty cases of revision ACL reconstruction were randomly selected from the Multicenter ACL Revision Study (MARS) database. Each case included the patient's history, standardized radiographs, and a concise 30-second arthroscopic video taken at the time of revision demonstrating the graft remnant and location of the tunnel apertures. All 20 cases were reviewed by 10 MARS surgeons not involved with the primary surgery. Each surgeon completed a 2-part questionnaire dealing with each surgeon's training and practice, as well as the placement of the femoral and tibial tunnels, condition of the primary graft, and the surgeon's opinion as to the causes of graft failure. Interrater agreement was determined for each question with the kappa coefficient and the prevalence-adjusted, bias-adjusted kappa (PABAK).ResultsThe 10 reviewers have been in practice an average of 14 years and have performed at least 25 ACL reconstructions per year, and 9 were fellowship trained in sports medicine. There was wide variability in agreement among knee experts as to the specific causes of ACL graft failure. When participants were specifically asked about technical error as the cause for failure, interobserver agreement was only slight (PABAK = 0.26). There was fair overall agreement on ideal femoral tunnel placement (PABAK = 0.55) but only slight agreement on whether a femoral tunnel was too anterior (PABAK = 0.24) and fair agreement on whether it was too vertical (PABAK = 0.46). There was poor overall agreement for ideal tibial tunnel placement (PABAK = 0.17).ConclusionThis study suggests that more objective criteria are needed to accurately determine the causes of primary ACL graft failure as well as the ideal femoral and tibial tunnel placement in patients undergoing revision ACL reconstruction