428 research outputs found

    Qubits as Parafermions

    Get PDF
    Qubits are neither fermions nor bosons. A Fock space description of qubits leads to a mapping from qubits to parafermions: particles with a hybrid boson-fermion quantum statistics. We study this mapping in detail, and use it to provide a classification of the algebras of operators acting on qubits. These algebras in turn classify the universality of different classes of physically relevant qubit-qubit interaction Hamiltonians. The mapping is further used to elucidate the connections between qubits, bosons, and fermions. These connections allow us to share universality results between the different particle types. Finally, we use the mapping to study the quantum computational power of certain anisotropic exchange Hamiltonians. In particular, we prove that the XY model with nearest-neighbor interactions only is not computationally universal. We also generalize previous results about universal quantum computation with encoded qubits to codes with higher rates.Comment: 17 pages, no figures. v3: This version to appear in J. Math. Phys., special issue on quantum computatio

    On the Finite Size Scaling in Disordered Systems

    Full text link
    The critical behavior of a quenched random hypercubic sample of linear size LL is considered, within the ``random-TcT_{c}'' field-theoretical mode, by using the renormalization group method. A finite-size scaling behavior is established and analyzed near the upper critical dimension d=4−ϔd=4-\epsilon and some universal results are obtained. The problem of self-averaging is clarified for different critical regimes.Comment: 21 pages, 2 figures, submitted to the Physcal Review

    Finite-size scaling properties of random transverse-field Ising chains : Comparison between canonical and microcanonical ensembles for the disorder

    Full text link
    The Random Transverse Field Ising Chain is the simplest disordered model presenting a quantum phase transition at T=0. We compare analytically its finite-size scaling properties in two different ensembles for the disorder (i) the canonical ensemble, where the disorder variables are independent (ii) the microcanonical ensemble, where there exists a global constraint on the disorder variables. The observables under study are the surface magnetization, the correlation of the two surface magnetizations, the gap and the end-to-end spin-spin correlation C(L)C(L) for a chain of length LL. At criticality, each observable decays typically as e−wLe^{- w \sqrt{L}} in both ensembles, but the probability distributions of the rescaled variable ww are different in the two ensembles, in particular in their asymptotic behaviors. As a consequence, the dependence in LL of averaged observables differ in the two ensembles. For instance, the correlation C(L)C(L) decays algebraically as 1/L in the canonical ensemble, but sub-exponentially as e−cL1/3e^{-c L^{1/3}} in the microcanonical ensemble. Off criticality, probability distributions of rescaled variables are governed by the critical exponent Îœ=2\nu=2 in both ensembles, but the following observables are governed by the exponent Îœ~=1\tilde \nu=1 in the microcanonical ensemble, instead of the exponent Îœ=2\nu=2 in the canonical ensemble (a) in the disordered phase : the averaged surface magnetization, the averaged correlation of the two surface magnetizations and the averaged end-to-end spin-spin correlation (b) in the ordered phase : the averaged gap. In conclusion, the measure of the rare events that dominate various averaged observables can be very sensitive to the microcanonical constraint.Comment: 24 page

    Community Support and Transition of Research to Operations for the Hurricane Weather Research and Forecasting Model

    Get PDF
    The Hurricane Weather Research and Forecasting Model (HWRF) is an operational model used to provide numerical guidance in support of tropical cyclone forecasting at the National Hurricane Center. HWRF is a complex multicomponent system, consisting of the Weather Research and Forecasting (WRF) atmospheric model coupled to the Princeton Ocean Model for Tropical Cyclones (POM-TC), a sophisticated initialization package including a data assimilation system and a set of postprocessing and vortex tracking tools. HWRF’s development is centralized at the Environmental Modeling Center of NOAA’s National Weather Service, but it incorporates contributions from a variety of scientists spread out over several governmental laboratories and academic institutions. This distributed development scenario poses significant challenges: a large number of scientists need to learn how to use the model, operational and research codes need to stay synchronized to avoid divergence, and promising new capabilities need to be tested for operational consideration. This article describes how the Developmental Testbed Center has engaged in the HWRF developmental cycle in the last three years and the services it provides to the community in using and developing HWRF

    Wang-Landau study of the 3D Ising model with bond disorder

    Full text link
    We implement a two-stage approach of the Wang-Landau algorithm to investigate the critical properties of the 3D Ising model with quenched bond randomness. In particular, we consider the case where disorder couples to the nearest-neighbor ferromagnetic interaction, in terms of a bimodal distribution of strong versus weak bonds. Our simulations are carried out for large ensembles of disorder realizations and lattices with linear sizes LL in the range L=8−64L=8-64. We apply well-established finite-size scaling techniques and concepts from the scaling theory of disordered systems to describe the nature of the phase transition of the disordered model, departing gradually from the fixed point of the pure system. Our analysis (based on the determination of the critical exponents) shows that the 3D random-bond Ising model belongs to the same universality class with the site- and bond-dilution models, providing a single universality class for the 3D Ising model with these three types of quenched uncorrelated disorder.Comment: 7 pages, 7 figures, to be published in Eur. Phys. J.

    Analytical and numerical study of hardcore bosons in two dimensions

    Full text link
    We study various properties of bosons in two dimensions interacting only via onsite hardcore repulsion. In particular, we use the lattice spin-wave approximation to calculate the ground state energy, the density, the condensate density and the superfluid density in terms of the chemical potential. We also calculate the excitation spectrum, ω(k)\omega({\bf k}). In addition, we performed high precision numerical simulations using the stochastic series expansion algorithm. We find that the spin-wave results describe extremely well the numerical results over the {\it whole} density range 0≀ρ≀10\leq \rho \leq 1. We also compare the lattice spin-wave results with continuum results obtained by summing the ladder diagrams at low density. We find that for ρ≀0.1\rho \leq 0.1 there is good agreement, and that the difference between the two methods vanishes as ρ2\rho^2 for ρ→0\rho \to 0. This offers the possibility of obtaining precise continuum results by taking the continuum limit of the spin-wave results for all densities. Finaly, we studied numerically the finite temperature phase transition for the entire density range and compared with low density predictions.Comment: 10 pages, 8 figures include

    Synergistic activity between primary visual neurons

    Get PDF
    Abstract : Cortical microcircuitry plays a pivotal role in encoding sensory information reaching the cortex. However, the fundamental knowledge concerning the mechanisms that govern feature-encoding by these sub-networks is still sparse. Here, we show through multi electrode recordings in V1 of conventionally prepared anesthetized cats, that an avalanche of synergistic neural activity occurs between functionally connected neurons in a cell assembly in response to the presented stimulus. The results specifically show that once the reference neuron spikes in a connected neuron-pair, it facilitates the response of its companion (target) neuron for 50 ms and, thereafter, the excitability of the target neuron declines. On the other hand, the functionally unconnected neurons do not facilitate each other’s activity within the 50 ms time-window. The added excitation (facilitation) of connected neurons is almost four times the responsiveness of unconnected neurons. This suggests that connectedness confers the added excitability to neurons; consequently leading to feature-encoding within the emergent 50 ms-period. Furthermore, the facilitation significantly decreases as a function of orientation selectivity spread

    Programmed health surveillance and detection of emerging diseases in occupational health: contribution of the French national occupational disease surveillance and prevention network (RNV3P)

    Get PDF
    Objective The French national occupational disease surveillance and prevention network (RNV3P) includes the 30 occupational disease consultation centres in university hospitals to which patients are referred for potentially work-related diseases, and an occupational health service. The aim of this work is to demonstrate the contribution of RNV3P to national health surveillance.Methods Data from consultations are recorded in standardised occupational health reports and coded using international or national classifications. Programmed health surveillance is carried out through annual follow-up of annual referrals to experts for pre-selected disease–exposure associations, as well as incidence estimations for the well characterised working population followed by the occupational health service. Hypotheses on new emerging diseases are generated using statistical methods employed in pharmacosurveillance and by modelling as an exposome to analyse multiple exposures. Results 58 777 occupational health reports were collected and analysed from 2001 to 2007. Referrals to the 30 university hospital centres increased significantly for asbestos-related diseases, mood disorders and adjustment disorders related to psychological and organisational demands, and for elbow and shoulder disorders related to manual handling. Referrals significantly decreased for asthma and for rhinitis related to exposure to organic dusts (vegetable or animal) or chemicals, except for cosmetics and cleaning products. Estimation of incidences by the occupational health services showed different patterns in different sectors of activity. The methods for detecting emerging diseases are presented and illustrated using the example of systemic sclerosis, identifying new exposures and new sectors of activity to be investigated. Conclusion The RNV3P collects data from two complementary samples: 30 university hospital centres (workers or former workers) and an occupational health service (current workers). This dual approach is useful for surveillance and for hypothesis generation on new emerging disease–exposure associations

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    • 

    corecore