33 research outputs found

    High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures

    Get PDF
    AbstractAerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance

    Trends in COVID-Related Activity in Sentinel Family Medicine Practices: An Observational Study

    Get PDF
    Objectives: During the COVID pandemic, data collected in family medicine were scarce. The COVID-FM project aimed to monitor trends of COVID-related activity in family medicine practices of the canton of Vaud, Switzerland, during the year 2021.Methods: Practitioners were invited to join an ad hoc sentinel surveillance system. Online data collection was based on daily activity reports and monthly questionnaires. Participants categorized daily counts of consultations and phone calls into predefined categories. Data were reported and discussed on a weekly basis with public health authorities.Results: On the target of 50 physicians, 37 general physicians from 32 practices finally constituted the COVID-FM sentinel network, contributing to 901 practice-weeks of surveillance in family medicine and 604 in paediatrics. In paediatrics, COVID-related activity corresponded mostly to COVID-19 diagnostic consultations (2911/25990 face-to-face consultations = 11.2%) while in family medicine, other COVID-related topics—such as questions on vaccination—predominated (4143/42221 = 9.8%).Conclusion: COVID-related consultations constituted an important part of primary care practices’ activity in 2021. Monitoring COVID-related activity in primary care provided health authorities with valuable information to guide public health action

    Screening for latent tuberculosis infection among undocumented immigrants in Swiss healthcare centres; a descriptive exploratory study

    Get PDF
    BACKGROUND: Migration is one of the major causes of tuberculosis in developed countries. Undocumented patients are usually not screened at the border and are not covered by a health insurance increasing their risk of developing the disease unnoticed. Urban health centres could help identify this population at risk. The objective of this study is to assess the prevalence of latent tuberculosis infection (LTBI) and adherence to preventive treatment in a population of undocumented immigrant patients. METHODS: All consecutive undocumented patients that visited two urban healthcare centres for vulnerable populations in Lausanne, Switzerland for the first time were offered tuberculosis screening with an interferon-gamma assay. Preventive treatment was offered if indicated. Adherence to treatment was evaluated monthly over a nine month period. RESULTS: Of the 161 participants, 131 (81.4%) agreed to screening and 125 had complete examinations. Twenty-four of the 125 patients (19.2%; CI95% 12.7;27.2) had positive interferon-gamma assay results, two of which had active tuberculosis. Only five patients with LTBI completed full preventive treatments. Five others initiated the treatment but did not follow through. CONCLUSION: Screening for tuberculosis infection in this hard-to-reach population is feasible in dedicated urban clinics, and the prevalence of LTBI is high in this vulnerable population. However, the low adherence to treatment is an important public health concern, and new strategies are needed to address this problem

    Fatigue crack growth monitoring using high-frequency guided waves

    No full text
    A common problem in aircraft maintenance is the development of fatigue cracks at fastener holes due to stress concentration. High-frequency guided ultrasonic waves allow for the structural health monitoring of critical areas of a structure and can be measured with high accuracy using a noncontact laser interferometer. The use of a specific type of high-frequency guided ultrasonic wave that has good sensitivity for the detection of small defects, excited using a standard Rayleigh wedge transducer and propagating along the structure, has been investigated. Fatigue crack growth at the side of a fastener hole in a tensile, aluminum specimen was induced by cyclic loading of the structure. The crack length was monitored optically and showed good correlation with fracture mechanics calculations of the expected growth rate. The changes in the guided wave signal due to the fatigue damage were monitored using a noncontact laser interferometer and quantified. The measurements show a good sensitivity for the early detection of fatigue damage and for the monitoring of fatigue crack growth at a fastener hole. The propagation and scattering of the high-frequency guided ultrasonic wave has been simulated numerically using a three-dimensional finite difference code. Good agreement was found between the measured and predicted changes of the ultrasonic signal for the increasing fatigue crack area, allowing in principle for the approximate sizing of the defect

    Analysis of high frequency guided wave scattering at a fastener hole with a view to fatigue crack detection

    No full text
    The scattering of high frequency guided ultrasonic waves by a fatigue crack at the side of a fastener hole has been studied. The guided wave pulse consists of the superposition of the two fundamental Lamb modes A0 and S0 above the cut-off frequencies of the higher modes. The scattered field was simulated using a three-dimensional finite difference algorithm with a staggered, Cartesian grid for the limited area of interest around the hole and an analytical phase angle correction for the additional, variable propagation distance. Experimentally, the modes were selectively excited using a standard ultrasonic wedge transducer and measured using a laser interferometer, resulting in good spatial resolution. The scattered field was measured and simulated for an undamaged hole, a small, part-thickness quarter-elliptical fatigue crack, and a through-thickness fatigue crack. Good agreement was found and a significant influence of the fatigue cracks on the scattered field was observed. The complex difference of the scattered field due to additional scattered waves at the fatigue cracks of variable depth and length was evaluated. This allows for the prediction of high frequency guided wave sensitivity for fatigue crack detection at fastener holes, a significant maintenance problem for ageing aircraft

    Noncontact monitoring of fatigue crack growth using high frequency guided waves

    No full text
    The development of fatigue cracks at fastener holes due to stress concentration is a common problem in aircraft maintenance. This contribution investigates the use of high frequency guided waves for the non-contact monitoring of fatigue crack growth in tensile, aluminium specimens. High frequency guided ultrasonic waves have a good sensitivity for defect detection and can propagate along the structure, thus having the potential for the inspection of difficult to access parts by means of non-contact measurements. Experimentally the required guided wave modes are excited using standard wedge transducers and measured using a laser interferometer. The growth of fatigue cracks during cyclic loading was monitored optically and the resulting changes in the signal caused by crack growth are quantified. Full three-dimensional simulation of the scattering of the high frequency guided ultrasonic waves at the fastener hole and crack has been implemented using the Finite Difference (FD) method. The comparison of the results shows a good agreement of the measured and predicted scattered field of the guided wave at quarter-elliptical and through-thickness fatigue cracks. The measurements show a good sensitivity for the early detection of fatigue damage and for the monitoring of fatigue crack growth at a fastener hole. The sensitivity and repeatability are ascertained, and the robustness of the methodology for practical in-situ ultrasonic monitoring of fatigue crack growth is discussed

    In-situ monitoring of fatigue crack growth using high frequency guided waves

    No full text
    The development of fatigue cracks at fastener holes represents a common maintenance problem for aircraft. High frequency guided ultrasonic waves allow for the monitoring of critical areas without direct access to the defect location. During cyclic loading of tensile, aluminum specimens fatigue crack growth at the side of a fastener hole was monitored. The changes in the energy ratio of the baseline subtracted reflected guided wave signal due to the fatigue damage were monitored from a stand-off distance using standard ultrasonic pulse–echo measurement equipment. Good sensitivity for the detection and monitoring of fatigue crack growth was found

    High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures

    No full text
    Especially for ageing aircraft the development of fatigue cracks at fastener holes due to stress concentration and varying loading conditions constitutes a significant maintenance problem. High frequency guided waves offer a potential compromise between the capabilities of local bulk ultrasonic measurements with proven defect detection sensitivity and the large area coverage of lower frequency guided ultrasonic waves. High frequency guided waves have energy distributed through all layers of the specimen thickness, allowing in principle hidden (2nd layer) fatigue damage monitoring. For the integration into structural health monitoring systems the sensitivity for the detection of hidden fatigue damage in inaccessible locations of the multi-layered components from a stand-off distance has to be ascertained. The multi-layered model structure investigated consists of two aluminium plate-strips with an epoxy sealant layer. During cyclic loading fatigue crack growth at a fastener hole was monitored. Specific guided wave modes (combination of fundamental A0 and S0 Lamb modes) were selectively excited above the cut-off frequencies of higher modes using a standard ultrasonic wedge transducer. Non-contact laser measurements close to the defect were performed to qualify the influence of a fatigue crack in one aluminium layer on the guided wave scattering. Fatigue crack growth monitoring using laser interferometry showed good sensitivity and repeatability for the reliable detection of small, quarter-elliptical cracks. Standard ultrasonic pulse-echo equipment was employed to monitor hidden fatigue damage from a stand-off distance without access to the damaged specimen layer. Sufficient sensitivity for the detection of fatigue cracks located in the inaccessible aluminium layer was verified, allowing in principle practical in situ ultrasonic monitoring of fatigue crack growth

    High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures

    No full text
    Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance
    corecore