3 research outputs found

    Micro Air Vehicles for Optical Surveillance Micro Air Vehicles for Optical Surveillance

    No full text
    â–  We present a study of micro air vehicles (MAVs) with wingspans of 7.4 to 15 cm. Potential applications for MAVs, both military and civilian, are numerous. For most military applications, MAVs would be controlled by local users, operating covertly, to supply real-time data. This article focuses on a military surveillance application that uses either visible or mid-wavelength infrared imaging sensors. We present concepts for these sensors as well as for a miniature Ka-band communications link. MAV flight control would require miniature motion sensors and control surface actuators based on technology under development by the micro electromechanical systems community. As designed, the MAV would fly in a low Reynolds-number regime at airspeeds of 10 to 15 m/sec. Propulsion would be provided by a combination of an electric motor with either an advanced lithium battery or fuel cell, or by a miniature internalcombustion engine, which is a more efficient option. Because of the close coupling between vehicle elements, system integration would be a significant challenge, requiring tight packaging and multifunction components to mee

    Direct detection of nucleic acid hybridization on the surface of a charge coupled device.

    No full text
    A method is described for the detection of DNA hybrids formed on a solid support, based upon the pairing of oligonucleotide chemistry and the technologies of electronic microdevice design. Surface matrices have been created in which oligonucleotide probes are covalently linked to a thin SiO2 film. 32P labeled target nucleic acid is then hybridized to this probe matrix under conditions of high stringency. The salient feature of the method is that to achieve the highest possible collection efficiency, the hybridization matrix is placed directly on the surface of a charge coupled device (CCD), which is used to detect 32P decay from hybridized target molecules (1, Eggers, M.D., Hogan, M.E., Reich, R.K., Lamture, J.B., Beattie, K.L., Hollis, M.A., Ehrilich, D.J., Kosicki, B.B., Shumaker, J.M., Varma, R.S., Burke, B.E., Murphy, A., and Rathman, D.D., (1993), Advances in DNA Sequencing Technology, Proc. SPIE, 1891, 13-26). Two implementations of the technology have been employed. The first involves direct attachment of the matrix to the surface of a CCD. The second involves attachment of the matrix to a disposible SiO2 coated chip, which is then placed face to face upon the CCD surface. As can be predicted from this favorable collection geometry and the known characteristics of a CCD, it is found that as measured by the time required to obtain equivalent signal to noise ratios, 32P detection speed by the direct CCD approach is at least 10 fold greater than can be obtained with a commercial gas phase array detector, and at least 100 fold greater than when X-ray film is used for 32P detection. Thus, it is shown that excellent quality hybridization signals can be obtained from a standard hybridization reaction, after only 1 second of CCD data acquisition
    corecore