8 research outputs found

    The Ontogeny of Social Comparisons by Rhesus Macaques (Macaca mulatta)

    Get PDF
    This longitudinal study investigated the development of social contrast-negative responses to inequitable rewards-in rhesus macaques (Macaca mulatta). Although responses to inequity by humans appear universal, this is something that develops with age. Infants first recognize inequity when around 18 months old and respond to it only when they are around 3 years old. To date, however, there have been no studies of the ontogeny of the inequity response in any species other than humans. To address this, we used an exchange paradigm, in which 10 pairs of rhesus monkeys had to exchange inedible tokens with the experimenter to get food rewards that differed in quality depending on the condition. All subjects were tested first when they were an average of 17 months old and a subset, of four pairs, was tested again a year later. Subjects responded negatively to contrast-recognizing a disparity in expected, as compared to, received rewards-based on both social and individual comparisons at the older age, but not at the younger age. Similar to humans, rhesus showed a developmental trajectory to social comparison, providing the first evidence for the ontogeny of this response in a non-human species

    What Is Your Diagnosis?

    No full text

    Postnatal Passive Immunization of Neonatal Macaques with a Triple Combination of Human Monoclonal Antibodies against Oral Simian-Human Immunodeficiency Virus Challenge

    No full text
    To develop prophylaxis against mother-to-child human immunodeficiency virus (HIV) transmission, we established a simian-human immunodeficiency virus (SHIV) infection model in neonatal macaques that mimics intrapartum mucosal virus exposure (T. W. Baba et al., AIDS Res. Hum. Retroviruses 10:351–357, 1994). Using this model, neonates were protected from mucosal SHIV-vpu(+) challenge by pre- and postnatal treatment with a combination of three human neutralizing monoclonal antibodies (MAbs), F105, 2G12, and 2F5 (Baba et al., Nat. Med. 6:200–206, 2000). In the present study, we used this MAb combination only postnatally, thereby significantly reducing the quantity of antibodies necessary and rendering their potential use in humans more practical. We protected two neonates with this regimen against oral SHIV-vpu(+) challenge, while four untreated control animals became persistently infected. Thus, synergistic MAbs protect when used as immunoprophylaxis without the prenatal dose. We then determined in vitro the optimal MAb combination against the more pathogenic SHIV89.6P, a chimeric virus encoding env of the primary HIV89.6. Remarkably, the most potent combination included IgG1b12, which alone does not neutralize SHIV89.6P. We administered the combination of MAbs IgG1b12, 2F5, and 2G12 postnatally to four neonates. One of the four infants remained uninfected after oral challenge with SHIV89.6P, and two infants had no or a delayed CD4(+) T-cell decline. In contrast, all control animals had dramatic drops in their CD4(+) T cells by 2 weeks postexposure. We conclude that our triple MAb combination partially protected against mucosal challenge with the highly pathogenic SHIV89.6P. Thus, combination immunoprophylaxis with passively administered synergistic human MAbs may play a role in the clinical prevention of mother-to-infant transmission of HIV type 1

    Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection

    Full text link
    Although maternal human immunodeficiency virus type 1 (HIV-1) transmission occurs during gestation, intrapartum and postpartum (by breast-feeding), 50-70% of all infected children seem to acquire HIV-1 shortly before or during delivery. Epidemiological evidence indicates that mucosal exposure is an important aspect of intrapartum HIV transmission. A simian immunodeficiency virus (SIV) macaque model has been developed that mimics the mucosal exposure that can occur during intrapartum HIV-1 transmission. To develop immunoprophylaxis against intrapartum HIV-1 transmission, we used SHIV-vpu+ (refs. 5,6), a chimeric simian-human virus that encodes the env gene of HIV-IIIB. Several combinations of human monoclonal antibodies against HIV-1 have been identified that neutralize SHIV-vpu+ completely in vitro through synergistic interaction. Here, we treated four pregnant macaques with a triple combination of the human IgG1 monoclonal antibodies F105, 2G12 and 2F5. All four macaques were protected against intravenous SHIV-vpu+ challenge after delivery. The infants received monoclonal antibodies after birth and were challenged orally with SHIV-vpu+ shortly thereafter. We found no evidence of infection in any infant during 6 months of follow-up. This demonstrates that IgG1 monoclonal antibodies protect against mucosal lentivirus challenge in neonates. We conclude that epitopes recognized by the three monoclonal antibodies are important determinants for achieving substantial protection, thus providing a rational basis for AIDS vaccine development
    corecore