2,105 research outputs found

    New results from DAMA/LIBRA

    Get PDF
    DAMA/LIBRA is running at the Gran Sasso National Laboratory of the I.N.F.N.. Here the results obtained with a further exposure of 0.34 ton x yr are presented. They refer to two further annual cycles collected one before and one after the first DAMA/LIBRA upgrade occurred on September/October 2008. The cumulative exposure with those previously released by the former DAMA/NaI and by DAMA/LIBRA is now 1.17 ton x yr, corresponding to 13 annual cycles. The data further confirm the model independent evidence of the presence of Dark Matter (DM) particles in the galactic halo on the basis of the DM annual modulation signature (8.9 sigma C.L. for the cumulative exposure). In particular, with the cumulative exposure the modulation amplitude of the single-hit events in the (2 -- 6) keV energy interval measured in NaI(Tl) target is (0.0116 +- 0.0013) cpd/kg/keV; the measured phase is (146 +- 7) days and the measured period is (0.999 +- 0.002) yr, values well in agreement with those expected for the DM particles.Comment: presented at the Int. Conf. Beyond the Standard Models of Particle Physics, Cosmology and Astrophysics (BEYOND 2010), 1-6 February 2010, Cape Town, South Afric

    Light Neutralinos and WIMP direct searches

    Get PDF
    The predictions of our previous analyses about possible low-mass (lower than 50 GeV) relic neutralinos are discussed in the light of the most recent results from WIMP direct detection experiments. It is proved that these light neutralinos are quite compatible with the new annual-modulation data of the DAMA Collaboration; our theoretical predictions are also compared with the upper bounds of the CDMS and EDELWEISS Collaborations.Comment: 4 pages, 1 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/note.ps.gz or through http://www.to.infn.it/astropart/index.htm

    Technical aspects in dark matter investigations

    Full text link
    Some theoretical and experimental aspects regarding the direct dark matter field are mentioned. In particular some arguments, which play a relevant role in the evaluation of model dependent interpretations of experimental results and in comparisons, are shortly addressed.Comment: Proceedings of TAUP 2011 Conferenc

    First results from dark matter search experiment with LiF bolometer at Kamioka Underground Laboratory

    Get PDF
    Tokyo group has performed first underground dark matter search experiment in 2001 through 2002 at Kamioka Observatory(2700m.w.e). The detector is eight LiF bolometers with total mass 168g aiming for the direct detection of WIMPs via spin-dependent interaction. With a total exposure of 4.1 kg days, we derived the limits in the a_p-a_n (WIMP-nucleon couplings) plane and excluded a large part of the parameter space allowed by the UKDMC experiment.Comment: 15 pages, 5 figure

    Wrong-Higgs Interactions without Flavor Problems and their Effects on Physical Observables

    Full text link
    We consider the wrong-Higgs interactions such as type-III two Higgs doublet models. Generally, such interactions cause flavor problems. However, if new Yukawa interactions have the same flavor structure as that of the standard model(SM), we do not have any flavor problems. In this work we propose a microscopic model for the wrong-Higgs interactions aligned with SM ones in the context of supersymmetry(SUSY) and show their phenomenological implications. Low energy contraints from muon g-2 and rare B decays can be relieved and it can be viable to have low mass superparticle spectra with light dark matter which is preferred by recent experiments such as DAMA/LIBRA, CDMS-II and CoGeNT. We also briefly discuss modification of Higgs decay in colliders.Comment: 17 pages, 5 figure

    Possible implications of the channeling effect in NaI(Tl) crystals

    Get PDF
    The channeling effect of low energy ions along the crystallographic axes and planes of NaI(Tl) crystals is discussed in the framework of corollary investigations on WIMP Dark Matter candidates. In fact, the modeling of this existing effect implies a more complex evaluation of the luminosity yield for low energy recoiling Na and I ions. In the present paper related phenomenological arguments are developed and possible implications are discussed at some extent.Comment: 16 pages, 10 figures, preprint ROM2F/2007/15, submitted for publicatio

    Can Neutron stars constrain Dark Matter?

    Full text link
    We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates.Comment: 20 pages, 5 figure

    Dilaton dominance in the early Universe dilutes Dark Matter relic abundances

    Full text link
    The role of the dilaton field and its coupling to matter may result to a dilution of Dark Matter (DM) relic densities. This is to be contrasted with quintessence scenarios in which relic densities are augmented, due to modification of the expansion rate, since Universe is not radiation dominated at DM decoupling. Dilaton field, besides this, affects relic densities through its coupling to dust which tends to decrease relic abundances. Thus two separate mechanisms compete each other resulting, in general, to a decrease of the relic density. This feature may be welcome and can rescue the situation if Direct Dark Matter experiments point towards small neutralino-nucleon cross sections, implying small neutralino annihilation rates and hence large relic densities, at least in the popular supersymmetric scenarios. In the presence of a diluting mechanism both experimental constraints can be met. The role of the dilaton for this mechanism has been studied in the context of the non-critical string theory but in this work we follow a rather general approach assuming that the dilaton dominates only at early eras long before Big Bang Nucleosynthesis.Comment: 11 pages, Latex, 4 figures: Comments and references added, version to appear in Phys. Rev.

    GENIUS-TF: a test facility for the GENIUS project

    Get PDF
    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the GENIUS test facility, will be build up at the Laboratorio Nazionale del Gran Sasso (LNGS). With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation signature within about two years of measurement.Comment: 14 pages, latex, 5 figures, 3 tables; submitted to Astroparticle Physic

    Phenomenology of light neutralinos in view of recent results at the CERN Large Hadron Collider

    Get PDF
    We review the status of the phenomenology of light neutralinos in an effective Minimal Supersymmetric extension of the Standard Model (MSSM) at the electroweak scale, in light of new results obtained at the CERN Large Hadron Collider. First we consider the impact of the new data obtained by the CMS Collaboration on the search for the Higgs boson decay into a tau pair, and by the CMS and LHCb Collaborations on the branching ratio for the decay Bsμ++μB_s \rightarrow {\mu}^{+} + {\mu}^{-}. Then we examine the possible implications of the excess of events found by the ATLAS and CMS Collaborations in a search for a SM--like Higgs boson around a mass of 126 GeV, with a most likely mass region (95% CL) restricted to 115.5--131 GeV (global statistical significance about 2.3 σ\sigma). From the first set of data we update the lower bound of the neutralino mass to be about 18 GeV. From the second set of measurements we derive that the excess around mHSMm^{SM}_H = 126 GeV, which however needs a confirmation by further runs at the LHC, would imply a neutralino in the mass range 18 GeV \lsim m_{\chi} \lsim 38 GeV, with neutralino--nucleon elastic cross sections fitting well the results of the dark matter direct search experiments DAMA/LIBRA and CRESST.Comment: 10 pages, 6 figures, typeset with ReVTeX4. v2:discussion on LHC Higgs excess extended and one figure added. Matches version accepted for publication on Phys.Rev.D. A version of the paper with full resolution figures can be found at http://www.to.infn.it/~scopel/phenom_v2.pd
    corecore