7 research outputs found
Lower virus infections in Varroa destructor-infested and uninfested brood and adult honey bees (Apis mellifera) of a low mite population growth colony compared to a high mite population growth colony.
A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection
Seasonality of Nosema ceranae Infections and Their Relationship with Honey Bee Populations, Food Stores, and Survivorship in a North American Region
Nosema ceranae is an emerging pathogen of the western honey bee (Apis mellifera L.), and thus its seasonality and impact on bee colonies is not sufficiently documented for North America. This study was conducted to determine the infection intensity, prevalence, and viability of N. ceranae in >200 honey bee colonies during spring, summer, and fall, in a North American region. We also determined the relationship of N. ceranae infections with colony populations, food stores, bee survivorship, and overwinter colony mortality. The highest rates of N. ceranae infection, prevalence, and spore viability were found in the spring and summer, while the lowest were recorded in the fall. N. ceranae spore viability was significantly correlated with its prevalence and infection intensity in bees. Threshold to high levels of N. ceranae infections (>1,000,000 spores/bee) were significantly associated with reduced bee populations and food stores in colonies. Furthermore, worker bee survivorship was significantly reduced by N. ceranae infections, although no association between N. ceranae and winter colony mortality was found. It is concluded that N. ceranae infections are highest in spring and summer and may be detrimental to honey bee populations and colony productivity. Our results support the notion that treatment is justified when infections of N. ceranae exceed 1,000,000 spores/bee