130 research outputs found
Kaluza-Klein Type Robertson Walker Cosmological Model With Dynamical Cosmological Term
In this paper we have analyzed the Kaluza-Klein type Robertson Walker (RW)
cosmological models by considering three different forms of variable :
, and
. It is found that, the connecting free parameters of the
models with cosmic matter and vacuum energy density parameters are equivalent,
in the context of higher dimensional space time. The expression for the look
back time, luminosity distance and angular diameter distance are also derived.
This work has thus generalized to higher dimensions the well-known results in
four dimensional space time. It is found that there may be significant
difference in principle at least, from the analogous situation in four
dimensional space time.Comment: 16 pages, no figur
Discrete molecular dynamics simulations of peptide aggregation
We study the aggregation of peptides using the discrete molecular dynamics
simulations. At temperatures above the alpha-helix melting temperature of a
single peptide, the model peptides aggregate into a multi-layer parallel
beta-sheet structure. This structure has an inter-strand distance of 0.48 nm
and an inter-sheet distance of 1.0 nm, which agree with experimental
observations. In this model, the hydrogen bond interactions give rise to the
inter-strand spacing in beta-sheets, while the Go interactions among side
chains make beta-strands parallel to each other and allow beta-sheets to pack
into layers. The aggregates also contain free edges which may allow for further
aggregation of model peptides to form elongated fibrils.Comment: 15 pages, 8 figure
Hard Photodisintegration of a Proton Pair
We present a study of high energy photodisintegration of proton-pairs through
the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used
in kinematics corresponding to a proton pair with high relative momentum and a
neutron nearly at rest. The s-11 scaling of the cross section, as predicted by
the constituent counting rule for two nucleon photodisintegration, was observed
for the first time. The onset of the scaling is at a higher energy and the
cross section is significantly lower than for deuteron (pn pair)
photodisintegration. For photon energies below the scaling region, the scaled
cross section was found to present a strong energy-dependent structure not
observed in deuteron photodisintegration.Comment: 7 pages, 3 figures, for submission to Phys. Lett.
The chromatin accessibility landscape of primary human cancers
We present the genome-wide chromatin accessibility profiles of 410 tumor samples spanning 23 cancer types from The Cancer Genome Atlas (TCGA).We identify 562,709 transposase-accessible DNA elements that substantially extend the compendium of known cis-regulatory elements. Integration of ATAC-seq (the assay for transposase-accessible chromatin using sequencing) with TCGA multi-omic data identifies a large number of putative distal enhancers that distinguish molecular subtypes of cancers, uncovers specific driving transcription factors via protein-DNA footprints, and nominates long-range gene-regulatory interactions in cancer. These data reveal genetic risk loci of cancer predisposition as active DNA regulatory elements in cancer, identify gene-regulatory interactions underlying cancer immune evasion, and pinpoint noncoding mutations that drive enhancer activation and may affect patient survival. These results suggest a systematic approach to understanding the noncoding genome in cancer to advance diagnosis and therapy
Automated Structure Solution with the PHENIX Suite
Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix.refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI
Fashion retailing – past, present and future
This issue of Textile Progress reviews the way that fashion retailing has developed as a result of the application of the World Wide Web and information and communications technology (ICT) by fashion-retail companies. The review therefore first considers how fashion retailing has evolved, analysing retail formats, global strategies, emerging and developing economies, and the factors that are threatening and driving growth in the fashion-retail market. The second part of the review considers the emergence of omni-channel retailing, analysing how retail has progressed and developed since the adoption of the Internet and how ICT initiatives such as mobile commerce (m-commerce), digital visualisation online, and in-store and self-service technologies have been proven to support the progression and expansion of fashion retailing. The paper concludes with recommendations on future research opportunities for gaining a better understanding of the impacts of ICT and omni-channel retailing, through which it may be possible to increase and develop knowledge and understanding of the way the sector is developing and provide fresh impetus to an already-innovative and competitive industr
Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US per capita, purchasing-power parity-adjusted US8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 13.7 billion was targeted toward the COVID-19 health response. 1.4 billion was repurposed from existing health projects. 2.4 billion (17.9%) was for supply chain and logistics. Only 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
- …