270 research outputs found
Quantum Dissipative Dynamics of the Magnetic Resonance Force Microscope in the Single-Spin Detection Limit
We study a model of a magnetic resonance force microscope (MRFM) based on the
cyclic adiabatic inversion technique as a high-resolution tool to detect single
electron spins. We investigate the quantum dynamics of spin and cantilever in
the presence of coupling to an environment. To obtain the reduced dynamics of
the combined system of spin and cantilever, we use the Feynman-Vernon influence
functional and get results valid at any temperature as well as at arbitrary
system-bath coupling strength. We propose that the MRFM can be used as a
quantum measurement device, i.e., not only to detect the modulus of the spin
but also its direction
The Renormalization Effects in the Microstrip-SQUID Amplifier
The peculiarities of the microstrip-DC SQUID amplifier caused by the resonant
structure of the input circuit are analyzed. It is shown that the mutual
inductance, that couples the input circuit and the SQUID loop, depends on the
frequency of electromagnetic field. The renormalization of the SQUID parameters
due to the screening effect of the input circuit vanishes when the Josephson
frequency is much greater than the signal frequency.Comment: 11 pages, 2 figure
K(E10), Supergravity and Fermions
We study the fermionic extension of the E10/K(E10) coset model and its
relation to eleven-dimensional supergravity. Finite-dimensional spinor
representations of the compact subgroup K(E10) of E(10,R) are studied and the
supergravity equations are rewritten using the resulting algebraic variables.
The canonical bosonic and fermionic constraints are also analysed in this way,
and the compatibility of supersymmetry with local K(E10) is investigated. We
find that all structures involving A9 levels 0,1 and 2 nicely agree with
expectations, and provide many non-trivial consistency checks of the existence
of a supersymmetric extension of the E10/K(E10) coset model, as well as a new
derivation of the `bosonic dictionary' between supergravity and coset
variables. However, there are also definite discrepancies in some terms
involving level 3, which suggest the need for an extension of the model to
infinite-dimensional faithful representations of the fermionic degrees of
freedom.Comment: 50 page
Interference-induced gain in Autler-Townes doublet of a V-type atom in a cavity
We study the Autler-Townes spectrum of a V-type atom coupled to a
single-mode, frequency-tunable cavity field at finite termperature, with a
pre-selected polarization in the bad cavity limit, and show that, when the mean
number of thermal photons and the excited sublevel splitting is very
large (the same order as the cavity linewidth), the probe gain may occur at
either sideband of the doublet, depending on the cavity frequency, due to the
cavity-induced interference.Comment: Minor changes are mad
Equidistribution of zeros of holomorphic sections in the non compact setting
We consider N-tensor powers of a positive Hermitian line bundle L over a
non-compact complex manifold X. In the compact case, B. Shiffman and S.
Zelditch proved that the zeros of random sections become asymptotically
uniformly distributed with respect to the natural measure coming from the
curvature of L, as N tends to infinity. Under certain boundedness assumptions
on the curvature of the canonical line bundle of X and on the Chern form of L
we prove a non-compact version of this result. We give various applications,
including the limiting distribution of zeros of cusp forms with respect to the
principal congruence subgroups of SL2(Z) and to the hyperbolic measure, the
higher dimensional case of arithmetic quotients and the case of orthogonal
polynomials with weights at infinity. We also give estimates for the speed of
convergence of the currents of integration on the zero-divisors.Comment: 25 pages; v.2 is a final update to agree with the published pape
Cavity implementation of quantum interference in a -type atom
A scheme for engineering quantum interference in a -type atom
coupled to a frequency-tunable, single-mode cavity field with a pre-selected
polarization at finite temperature is proposed. Interference-assisted
population trapping, population inversions and probe gain at one sideband of
the Autler-Townes spectrum are predicted for certain cavity resonant
frequencies.Comment: 2 postscript figures are adde
Higher Dimensional Cosmological Implications Of A Decay Law For Term : Expressions For Some Observable Quantities
Implications of cosmological model with a cosmological term of the form
, where is a constant, are
analyzed in multidimensional space time. The proper distance, the luminosity
distance-redshift, the angular diameter distance-redshift, and look back
time-redshift for the model are presented. It has been shown that such models
are found to be compatible with the recent observations. This work has thus
generalized to higher dimensions the well-know result in four dimensional space
time. It is found that there may be significant difference in principle at
least,from the analogous situation in four dimensional space time.Comment: 11 pages, no figur
Spinor condensates and light scattering from Bose-Einstein condensates
These notes discuss two aspects of the physics of atomic Bose-Einstein
condensates: optical properties and spinor condensates. The first topic
includes light scattering experiments which probe the excitations of a
condensate in both the free-particle and phonon regime. At higher light
intensity, a new form of superradiance and phase-coherent matter wave
amplification were observed. We also discuss properties of spinor condensates
and describe studies of ground--state spin domain structures and dynamical
studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999
Summer School, Session LXXI
Prostate cancer and Hedgehog signalling pathway
[Abstract] The Hedgehog (Hh) family of intercellular signalling proteins have come to be recognised as key mediators in many fundamental processes in embryonic development. Their activities are central to the growth, patterning and morphogenesis of many different regions within the bodies of vertebrates. In some contexts, Hh signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens in the regulation of cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hh proteins raise many intriguing questions about their mode of action. Various studies have now demonstrated the function of Hh signalling in the control of cell proliferation, especially for stem cells and stem-like progenitors. Abnormal activation of the Hh pathway has been demonstrated in a variety of human tumours. Hh pathway activity in these tumours is required for cancer cell proliferation and tumour growth. Recent studies have uncovered the role for Hh signalling in advanced prostate cancer and demonstrated that autocrine signalling by tumour cells is required for proliferation, viability and invasive behaviour. Thus, Hh signalling represents a novel pathway in prostate cancer that offers opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring
- …