5,133 research outputs found
Glauber Critical Dynamics: Exact Solution of the Kinetic Gaussian Model
In this paper, we have exactly solved Glauber critical dynamics of the
Gaussian model on three dimensions. Of course, it is much easy to apply to low
dimensional case. The key steps are that we generalize the spin change
mechanism from Glauber's single-spin flipping to single-spin transition and
give a normalized version of the transition probability . We have also
investigated the dynamical critical exponent and found surprisingly that the
dynamical critical exponent is highly universal which refer to that for one-
two- and three-dimensions they have same value independent of spatial
dimensionality in contrast to static (equilibrium) critical exponents.Comment: 9 page
Dimensional Crossover in the Large N Limit
We consider dimensional crossover for an Landau-Ginzburg-Wilson model
on a -dimensional film geometry of thickness in the large -limit. We
calculate the full universal crossover scaling forms for the free energy and
the equation of state. We compare the results obtained using ``environmentally
friendly'' renormalization with those found using a direct, non-renormalization
group approach. A set of effective critical exponents are calculated and
scaling laws for these exponents are shown to hold exactly, thereby yielding
non-trivial relations between the various thermodynamic scaling functions.Comment: 25 pages of PlainTe
A generalized spherical version of the Blume-Emery-Griffits model with ferromagnetic and antiferromagnetic interactions
We have investigated analitycally the phase diagram of a generalized
spherical version of the Blume-Emery-Griffiths model that includes
ferromagnetic or antiferromagnetic spin interactions as well as quadrupole
interactions in zero and nonzero magnetic field. We show that in three
dimensions and zero magnetic field a regular paramagnetic-ferromagnetic (PM-FM)
or a paramagnetic-antiferromagnetic (PM-AFM) phase transition occurs whenever
the magnetic spin interactions dominate over the quadrupole interactions.
However, when spin and quadrupole interactions are important, there appears a
reentrant FM-PM or AFM-PM phase transition at low temperatures, in addition to
the regular PM-FM or PM-AFM phase transitions. On the other hand, in a nonzero
homogeneous external magnetic field , we find no evidence of a transition to
the state with spontaneous magnetization for FM interactions in three
dimensions. Nonethelesss, for AFM interactions we do get a scenario similar to
that described above for zero external magnetic field, except that the critical
temperatures are now functions of . We also find two critical field values,
, at which the reentrance phenomenon dissapears and
(), above which the PM-AFM transition temperature
vanishes.Comment: 21 pages, 6 figs. Title changed, abstract and introduction as well as
section IV were rewritten relaxing the emphasis on spin S=1 and Figs. 5 an 6
were improved in presentation. However, all the results remain valid.
Accepted for publication in Phys. Rev.
Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes
Glutathione oxidants such as tertiary butyl hydroperoxide were shown previously to prevent microtubule assembly and cause breakdown of preassembled cytoplasmic microtubules in human polymorphonuclear leukocytes. The objectives of the present study were to determine the temporal relationship between the attachment and ingestion of phagocytic particles and the assembly of microtubules, and simultaneously to quantify the levels of reduced glutathione and products of its oxidation as potential physiological regulators of assembly. Polymorphonuclear leukocytes from human peripheral blood were induced to phagocytize opsonized zymosan at 30 degrees C. Microtubule assembly was assessed in the electron microscope by direct counts of microtubules in thin sections through centrioles. Acid extracts were assayed for reduced glutathione (GSH) and oxidized glutathione (GSSG), by the sensitive enzymatic procedure of Tietze. Washed protein pellets were assayed for free sulfhydryl groups and for mixed protein disulfides with glutathione (protein-SSG) after borohydride splitting of the disulfide bond. Resting cells have few assembled microtubules. Phagocytosis induces a cycle of rapid assembly followed by disassembly. Assembly is initiated by particle contact and is maximal by 3 min of phagocytosis. Disassembly after 5-9 min of phagocytosis is preceded by a slow rise in GSSG and coincides with a rapid rise in protein-SSG. Protein-SSG also increases under conditions in which butyl hydroperoxide inhibits the assembly of microtubules that normally follows binding of concanavalin A to leukocyte cell surface receptors. No evidence for direct involvement of GSH in the induction of assembly was obtained. The formation of protein-SSG, however, emerges as a possible regulatory mechanism for the inhibition of microtubule assembly and induction of their disassembly
Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors
Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 (177Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either 177Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) (177Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the 177Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the 177Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the 177Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the 177Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame. Conclusions Treatment with 177Lu-Dotatate resulted in markedly longer progression-free survival and a significantly higher response rate than high-dose octreotide LAR among patients with advanced midgut neuroendocrine tumors. Preliminary evidence of an overall survival benefit was seen in an interim analysis; confirmation will be required in the planned final analysis. Clinically significant myelosuppression occurred in less than 10% of patients in the 177Lu-Dotatate group. (Funded by Advanced Accelerator Applications; NETTER-1 ClinicalTrials.gov number, NCT01578239 ; EudraCT number 2011-005049-11
Solvable Kinetic Gaussian Model in External Field
In this paper, the single-spin transition dynamics is used to investigate the
kinetic Gaussian model in a periodic external field. We first derive the
fundamental dynamic equations, and then treat an isotropic d-dimensional
hypercubic lattice Gaussian spin system with Fourier's transformation method.
We obtain exactly the local magnetization and the equal-time pair correlation
function. The critical characteristics of the dynamical, the complex
susceptibility, and the dynamical response are discussed. The results show that
the time evolution of the dynamical quantities and the dynamical responses of
the system strongly depend on the frequency and the wave vector of the external
field.Comment: 11 page
Field Theory Entropy, the -theorem and the Renormalization Group
We consider entropy and relative entropy in Field theory and establish
relevant monotonicity properties with respect to the couplings. The relative
entropy in a field theory with a hierarchy of renormalization group fixed
points ranks the fixed points, the lowest relative entropy being assigned to
the highest multicritical point. We argue that as a consequence of a
generalized theorem Wilsonian RG flows induce an increase in entropy and
propose the relative entropy as the natural quantity which increases from one
fixed point to another in more than two dimensions.Comment: 25 pages, plain TeX (macros included), 6 ps figures. Addition in
title. Entropy of cutoff Gaussian model modified in section 4 to avoid a
divergence. Therefore, last figure modified. Other minor changes to improve
readability. Version to appear in Phys. Rev.
The 1/D Expansion for Classical Magnets: Low-Dimensional Models with Magnetic Field
The field-dependent magnetization m(H,T) of 1- and 2-dimensional classical
magnets described by the -component vector model is calculated analytically
in the whole range of temperature and magnetic fields with the help of the 1/D
expansion. In the 1-st order in 1/D the theory reproduces with a good accuracy
the temperature dependence of the zero-field susceptibility of antiferromagnets
\chi with the maximum at T \lsim |J_0|/D (J_0 is the Fourier component of the
exchange interaction) and describes for the first time the singular behavior of
\chi(H,T) at small temperatures and magnetic fields: \lim_{T\to 0}\lim_{H\to 0}
\chi(H,T)=1/(2|J_0|)(1-1/D) and \lim_{H\to 0}\lim_{T\to 0}
\chi(H,T)=1/(2|J_0|)
Vibrational Enhancement of the Effective Donor - Acceptor Coupling
The paper deals with a simple three sites model for charge transfer phenomena
in an one-dimensional donor (D) - bridge (B) - acceptor (A) system coupled with
vibrational dynamics of the B site. It is found that in a certain range of
parameters the vibrational coupling leads to an enhancement of the effective
donor - acceptor electronic coupling as a result of the formation of the
polaron on the B site. This enhancement of the charge transfer efficiency is
maximum at the resonance, where the effective energy of the fluctuating B site
coincides with the donor (acceptor) energy.Comment: 5 pages, 3 figure
Avoided Critical Behavior in O(n) Systems
Long-range frustrating interactions, even if their strength is infinitesimal,
can give rise to a dramatic proliferations of ground or near-ground states. As
a consequence, the ordering temperature can exhibit a discontinuous drop as a
function of the frustration. A simple model of the doped Mott insulator, where
the short-range tendency of the holes to phase separate competes with
long-range Coulomb effects, exhibits this "avoided critical" behavior. This
model may serve as a paradigm for many other systems.Comment: 4 pages, 2 figure
- …