19 research outputs found
Modulation of vaccine-induced immune responses to hepatitis C virus in rhesus macaques by altering priming before adenovirus boosting
BACKGROUND:
Preventive and therapeutic vaccine strategies aimed at controlling hepatitis C virus (HCV) infection should mimic the immune responses observed in patients who control or clear HCV, specifically T helper (Th) type 1 and CD8+ cell responses to multiple antigens, including nonstructural protein (NS) 3. Given the experience with human immunodeficiency virus, the best candidates for this are based on DNA prime, pox, or adenovirus boost regimens.
METHODS:
In rhesus macaques, we compared NS3-expressing DNA prime and adenovirus boost strategy with 2 alternative priming approaches aimed at modifying Th1 and CD8+ responses: DNA adjuvanted with interleukin (IL)-2- and -12-encoding plasmids or Semliki Forest virus (SFV).
RESULTS:
All prime-boost regimens elicited NS3-specific B and T cell responses in rhesus macaques, including CD8+ responses. SFV priming induced higher lymphoproliferation and longer Th1 memory responses. The use of IL-2- and IL-12-expressing vectors resulted in reduced Th2 and antibody responses, which led to increased Th1 skewing but not to an increase in the magnitude of the IFN- gamma and CD8+ responses.
CONCLUSIONS:
All strategies induced Th1 cellular responses to HCV NS3, with fine modulations depending on the different priming approaches. When they are developed for more HCV antigens, these strategies could be beneficial in therapeutic vaccine approaches
On post-Lie algebras, Lie--Butcher series and moving frames
Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on
differential manifolds. They have been studied extensively in recent years,
both from algebraic operadic points of view and through numerous applications
in numerical analysis, control theory, stochastic differential equations and
renormalization. Butcher series are formal power series founded on pre-Lie
algebras, used in numerical analysis to study geometric properties of flows on
euclidean spaces. Motivated by the analysis of flows on manifolds and
homogeneous spaces, we investigate algebras arising from flat connections with
constant torsion, leading to the definition of post-Lie algebras, a
generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately
associated with euclidean geometry, post-Lie algebras occur naturally in the
differential geometry of homogeneous spaces, and are also closely related to
Cartan's method of moving frames. Lie--Butcher series combine Butcher series
with Lie series and are used to analyze flows on manifolds. In this paper we
show that Lie--Butcher series are founded on post-Lie algebras. The functorial
relations between post-Lie algebras and their enveloping algebras, called
D-algebras, are explored. Furthermore, we develop new formulas for computations
in free post-Lie algebras and D-algebras, based on recursions in a magma, and
we show that Lie--Butcher series are related to invariants of curves described
by moving frames.Comment: added discussion of post-Lie algebroid
Population genomics of mycobacterium ieprae reveals a new genotype in Madagascar and the Comoros
Human settlement of Madagascar traces back to the beginning of the first millennium with the arrival of Austronesians from Southeast Asia, followed by migrations from Africa and the Middle East. Remains of these different cultural, genetic, and linguistic legacies are still present in Madagascar and other islands of the Indian Ocean. The close relationship between human migration and the introduction and spread of infectious diseases, a well-documented phenomenon, is particularly evident for the causative agent of leprosy, Mycobacterium leprae. In this study, we used whole-genome sequencing (WGS) and molecular dating to characterize the genetic background and retrace the origin of the M. leprae strains circulating in Madagascar (n = 30) and the Comoros (n = 3), two islands where leprosy is still considered a public health problem and monitored as part of a drug resistance surveillance program. Most M. leprae strains (97%) from Madagascar and Comoros belonged to a new genotype as part of branch 1, closely related to single nucleotide polymorphism (SNP) type 1D, named 1D-Malagasy. Other strains belonged to the genotype 1A (3%). We sequenced 39 strains from nine other countries, which, together with previously published genomes, amounted to 242 genomes that were used for molecular dating. Specific SNP markers for the new 1D-Malagasy genotype were used to screen samples from 11 countries and revealed this genotype to be restricted to Madagascar, with the sole exception being a strain from Malawi. The overall analysis thus ruled out a possible introduction of leprosy by the Austronesian settlers and suggests a later origin from East Africa, the Middle East, or South Asia.Immunogenetics and cellular immunology of bacterial infectious disease
Modulation of vaccine-induced immune responses to hepatitis C virus in rhesus macaques by altering priming before adenovirus boosting
BACKGROUND:
Preventive and therapeutic vaccine strategies aimed at controlling hepatitis C virus (HCV) infection should mimic the immune responses observed in patients who control or clear HCV, specifically T helper (Th) type 1 and CD8+ cell responses to multiple antigens, including nonstructural protein (NS) 3. Given the experience with human immunodeficiency virus, the best candidates for this are based on DNA prime, pox, or adenovirus boost regimens.
METHODS:
In rhesus macaques, we compared NS3-expressing DNA prime and adenovirus boost strategy with 2 alternative priming approaches aimed at modifying Th1 and CD8+ responses: DNA adjuvanted with interleukin (IL)-2- and -12-encoding plasmids or Semliki Forest virus (SFV).
RESULTS:
All prime-boost regimens elicited NS3-specific B and T cell responses in rhesus macaques, including CD8+ responses. SFV priming induced higher lymphoproliferation and longer Th1 memory responses. The use of IL-2- and IL-12-expressing vectors resulted in reduced Th2 and antibody responses, which led to increased Th1 skewing but not to an increase in the magnitude of the IFN- gamma and CD8+ responses.
CONCLUSIONS:
All strategies induced Th1 cellular responses to HCV NS3, with fine modulations depending on the different priming approaches. When they are developed for more HCV antigens, these strategies could be beneficial in therapeutic vaccine approaches
A Two-Photon Excitation Fluorescence Cross-Correlation Assay for a Model Ligand-Receptor Binding System Using Quantum Dots
Two-photon excitation fluorescence cross-correlation spectroscopy (TPE-XCS) is a very suitable method for studying interactions of two distinctly labeled fluorescent molecules. As such, it lends itself nicely to the study of ligand-receptor interactions. By labeling the ligand with one color of fluorescent dye and the receptor with another, it is possible to directly monitor ligand binding rather than inferring binding by monitoring downstream effects. One challenge of the TPE-XCS approach is that of separating the signal due to the receptor from that of the ligand. Using standard organic fluorescent labels there is almost inevitably spectral cross talk between the detection channels, which must be accounted for in TPE-XCS data analysis. However, using quantum dots as labels for both ligand and receptor this limitation can be alleviated, because of the dot's narrower emission spectra. Using solely quantum dots as fluorescent labels is a novel approach to TPE-XCS, which may be generalizable to many pairs of interacting biomolecules after the proof of principle and the assessment of limitations presented here. Moreover, it is essential that relevant pharmacological parameters such as the equilibrium dissociation constant, K(d), can be easily extracted from the XCS data with minimal processing. Herein, we present a modified expression for fractional occupancy based on the auto- and cross-correlation decays obtained from a well-defined ligand-receptor system. Nanocrystalline semiconductor quantum dots functionalized with biotin (λ(em) = 605 nm) and streptavidin (λ(em) = 525 nm) were used for which an average K(d) value of 0.30 ± 0.04 × 10(−9) M was obtained (cf. native system ∼10(−15)). Additionally, the off-rate coefficient (k(off)) for dissociation of the two quantum dots was determined as 5 × 10(−5) s(−1). This off-rate is slightly larger than for native biotin-streptavidin (5 × 10(−6) s(−1)); the bulky nature of the quantum dots and restricted motion/orientation of functionalized dots in solution can account for differences in the streptavidin-biotin mediated dot-dot binding compared with those for native streptavidin-biotin
Customization in a unified framework for summarizing medical literature
10.1016/j.artmed.2004.07.018Artificial Intelligence in Medicine332179-198AIME
Vaccine-induced early control of hepatitis C virus infection in chimpanzees fails to impact on hepatic PD-1 and chronicity
Broad T cell and B cell responses to multiple HCV antigens are observed early in individuals who control or clear HCV infection. The prevailing hypothesis has been that similar immune responses induced by prophylactic immunization would reduce acute virus replication and protect exposed individuals from chronic infection. Here, we demonstrate that immunization of naïve chimpanzees with a multicomponent HCV vaccine induced robust HCV-specific immune responses, and that all vaccinees exposed to heterologous chimpanzee-adapted HCV 1b J4 significantly reduced viral RNA in serum by 84%, and in liver by 99% as compared to controls (P=0.024 and 0.028, respectively). However, despite control of HCV in plasma and liver in the acute period, in the chronic phase, 3 of 4 vaccinated animals developed persistent infection. Analysis of expression levels of proinflammatory cytokines in serial hepatic biopsies failed to reveal an association with vaccine outcome. However, expression of IDO, CTLA-4 [corrected] and PD-1 levels in liver correlated with clearance or chronicity. CONCLUSION: Despite early control of virus load, a virus-associated tolerogenic-like state can develop in certain individuals independent of vaccination history