79 research outputs found

    Ecological connectivity in marine protected areas in Swedish Baltic coastal waters - A coherence assessment

    Get PDF
    The Department of Aquatic Resources at the Swedish University of Agricultural Sciences (SLU Aqua) was commissioned by the Swedish Agency for Marine and Water Management to assess the ecological coherence of the marine protected area (MPA) network along the Swedish Baltic Sea coast, focusing on ecological connectivity and representativity, and species performing active migrations. The study also aimed to test the influence of anthropogenic pressures on connectivity and identify areas for expansion of the existing MPA network to maximise connectivity in the region. This report is the first to assess large-scale connectivity and ecological coherence of the MPA network in the Baltic Sea with a focus on coastal habitat-forming vegetation and fish species with active dispersal. Information on dispersal/migration distances was combined with species distribution models to produce connectivity maps. To align the coherence analyses with the conservation targets specified by responsible authorities, we included the nested targets for specific species ("preciserade bevarandevärden” in Swedish) listed within the Swedish framework for MPAs. Fish species like eel, salmon and trout, as well as birds and seals, which are also listed as nested targets, were not included in our analyses, since connectivity models of these long-distance migrants would be redundant as they do not affect the more small-scale connectivity patterns that are in focus in this study. Hotspot areas for connectivity were identified, and these were generally concentrated in a few, relatively small areas. These hotspot areas are, however, highly susceptible to coastal development and human activities, as they are often situated in bays, inlets and topographically complex archipelagos. Anthropogenic pressures, in this case physical disturbance, had a relatively large predicted impact on connectivity, particularly on certain species. The majority of these species are of freshwater origin and have shorter migration distances (e.g. crucian carp, roach, common rudd, common bream/silver bream, and common bleak) than marine species like cod, flounder and herring, which perform long-distance migrations between open sea and coastal areas as part of their life cycle. Also large predatory fish like pike, pike-perch and perch, as well as habitat-forming submerged aquatic vegetation (SAV), showed a pronounced decrease in connectivity when incorporating physical disturbance into the models. This may be explained by most human pressures being concentrated along the coastline, often in shallow sheltered bays and inlets where human development coincides with sensitive vegetated habitats and important breeding, spawning, nursery and feeding grounds for fish. Connectivity is reduced when habitats become fragmented or diminished and populations become smaller and more isolated. This may in turn have consequences on genetic diversity, viability of populations and ultimately ecosystem functioning. Representativity of habitats; i.e. amount of habitat protected, was below what is generally scientifically recommended and the new target of 30% protection by 2030 in the EU Biodiversity Strategy for all but three species (of 30 in total). Representativity was very poor regarding strict MPAs, an average of 2% across species. The target according to the EU Biodiversity Strategy is 10% strict protection. Similar results were found for connectivity where the amount connected habitat within MPAs was low. MPAs in the study area were sufficiently spaced (distance apart), but dominated by MPAs of small size. Priority areas with high connectivity (identified by the spatial prioritization software prioritizr) were insufficiently protected and the connectivity of the network could be greatly improved with targeted protection in just a few important locations. Areas that are well connected locally, but are isolated from other priority areas, are especially important to protect as they are critical to connectivity of the network. Regulations within the MPA network in Swedish Baltic Sea coastal waters are generally weak, particularly in the priority areas. Applying an ecosystem-based management approach and including stronger regulations of fisheries and of activities causing local physical disturbance in parts of the MPA network is encouraged in order to reach conservation goals. The results from this study can be used to improve planning and management of the Baltic Sea MPA network, marine spatial planning in the region and improving the green infrastructure, securing important ecosystem services for future generations

    Ecological connectivity of the marine protected area network in the Baltic Sea, Kattegat and Skagerrak: Current knowledge and management needs

    Get PDF
    Marine protected areas (MPAs) have become a key component of conservation and fisheries management to alleviate anthropogenic pressures. For MPA networks to efficiently promote persistence and recovery of populations, ecological connectivity, i.e. dispersal and movement of organisms and material across ecosystems, needs to be taken into account. To improve the ecological coherence of MPA networks, there is hence a need to evaluate the connectivity of species spreading through active migration and passive dispersal. We reviewed knowledge on ecological connectivity in the Baltic Sea, Kattegat and Skagerrak in the northeast Atlantic and present available information on species-specific dispersal and migration distances. Studies on genetic connectivity are summarised and discussed in relation to dispersal-based analyses. Threats to ecological connectivity, limiting dispersal of populations and lowering the resilience to environmental change, were examined. Additionally, a review of studies evaluating the ecological coherence of MPA networks in the Baltic Sea, Kattegat and Skagerrak was performed, and suggestions for future evaluations to meet management needs are presented

    Securing sustainable access to aquatic foods

    Get PDF
    Global nutrition needs are increasing and aquatic foods have recently been identified as crucial in addressing many of the world’s urgent challenges, including hunger and malnutrition. This synthesis highlights the importance of aquatic foods as a source of protein, micronutrients and income, its potential to meet increasing food demands, as well as the challenges in aquatic food production and harvesting.Most importantly, it provides an overview of management initiatives and innovative solutions for secured sustainable access to aquatic foods in the future. Aquatic foods provide micronutrient-rich foods for 3.3 billion people and support the livelihoods of more than 800 million people. Small-scale fisheries, in particular, play a key role in supporting the diversity and nutritional benefits of aquatic foods. However, the capture and production of aquatic foods is not always sustainable, and access to these foods may be unequal. At the water-land nexus, new ways of producing aquatic foods hold the potential to reduce the climate footprint in the food system.The governance of, and investment in, aquatic food systems needs to aim to preserve, support and improve aquatic species diversity and to improve access to this highly nutritious food. These efforts need to include multiple stakeholders, such as fishers, community agencies, policy makers and researchers, and be firmly established in both the latest research and in a local/regional context - ecologically and socially. By incorporating different aspects of aquatic foods, this synthesis aims to inspire and inform the reader about the importance of these systems, and means for a sustainable way forward

    Seascape Configuration and Fine-Scale Habitat Complexity Shape Parrotfish Distribution and Function across a Coral Reef Lagoon

    Get PDF
    Structural complexity spanning fine to broad spatial scales can influence the distribution and activity of key organisms within marine ecosystems. However, the relative importance of hard (e.g., corals) and/or soft (e.g., macroalgae) structural complexity for marine organisms is often unclear. This study shows how both broad-scale (seascape configuration of coral structure) and fine-scale habitat complexity (structure height, number of holes, and presence of macroalgae) can influence the abundance and spatial ecology of reef fish. Underwater visual census of fish, surveys of habitats, remote underwater videos, and behavioral observations by following individual fish were used to quantify fine-scale habitat characteristics (e.g., complexity, coral structure height, macroalgae presence) and the abundance, size structure, and behavior (rates of herbivory, tortuosity ratios and total distance travelled) of abundant parrotfish. Both seascape configuration and macroalgae influenced the patterns of fish abundance and rates of herbivory. However, these relationships varied with trophic groups and ontogenetic stages. Abundance of adult and intermediate-phase parrotfishes was positively influenced by densely aggregated coral structures, whereas juvenile abundance was positively influenced by the presence of macroalgae. Foraging path and bite rates of an abundant parrotfish, Chlorurus spilurus, were not influenced by coral structure configuration or height, but the presence of macroalgae increased the bite rates of all juvenile parrotfish. Our results suggest that a combination of seascape configuration, fine-scale habitat complexity, and microhabitat selectivity influence reef fish community structure and foraging behavior, thus altering herbivory. However, these relationships can differ among functional groups of fish and life-history stages. Information on these fish-habitat interactions is critical for identifying habitats that facilitate ecological functions and ensures the successful management and conservation of essential habitats

    Seascape configuration leads to spatially uneven delivery of parrotfish herbivory across a Western Indian Ocean seascape

    Get PDF
    Spatial configuration of habitat types in multihabitat seascapes influence ecological function through links of biotic and abiotic processes. These connections, for example export of organic matter or fishes as mobile links, define ecosystem functionality across broader spatial scales. Herbivory is an important ecological process linked to ecosystem resilience, but it is not clear how herbivory relates to seascape configuration. We studied how herbivory and bioerosion by 3 species of parrotfish were distributed in a multi-habitat tropical seascape in the Western Indian Ocean (WIO). We surveyed the abundance of three species with different life histories—Leptoscarus vaigiensis (seagrass species), Scarus ghobban (juvenile-seagrass/adults-reefs) and Scarus rubroviolaceus (reef species) —in seagrass meadows and on reefs and recorded their selectivity of feeding substrate in the two habitats. Herbivory rates for L. vaigiensis and S. ghobban and bioerosion for S. rubroviolaceus were then modelled using bite rates for different size classes and abundance and biomass data along seascape gradients (distance to alternative habitat types such as land, mangrove and seagrass). Bioerosion by S. rubroviolaceus was greatest on reefs far from seagrass meadows, while herbivory rates by S. ghobban on reefs displayed the opposite pattern. Herbivory in seagrass meadows was greatest in meadows close to shore, where L. vaigiensis targeted seagrass leaves and S. ghobban the epiphytes growing on them. Our study shows that ecological functions performed by fish are not equally distributed in the seascape and are influenced by fish life history and the spatial configuration of habitats in the seascape. This has implications for the resilience of the system, in terms of spatial heterogeneity of herbivory and bioerosion and should be considered in marine spatial planning and fisheries management

    Different environmental variables predict distribution and cover of the introduced red seaweed Eucheuma denticulatum in two geographical locations

    Get PDF
    In this study we examined abiotic and biotic factors that could potentially influence the presence of a non-indigenous seaweed, Eucheuma denticulatum, in two locations, one outside (Kane'ohe Bay, Hawai'i, USA) and one within (Mafia Island, Tanzania) its natural geographical range. We hypothesized that the availability of hard substrate and the amount of wave exposure would explain distribution patterns, and that higher abundance of herbivorous fishes in Tanzania would exert stronger top-down control than in Hawai'i. To address these hypotheses, we surveyed E. denticulatum in sites subjected to different environmental conditions and used generalized linear mixed models (GLMM) to identify predictors of E. denticulatum presence. We also estimated grazing intensity on E. denticulatum by surveying the type and the amount of grazing scars. Finally, we used molecular tools to distinguish between indigenous and non-indigenous strains of E. denticulatum on Mafia Island. In Kane'ohe Bay, the likelihood of finding E. denticulatum increased with wave exposure, whereas on Mafia Island, the likelihood increased with cover of coral rubble, and decreased with distance from areas of introduction (AOI), but this decrease was less pronounced in the presence of coral rubble. Grazing intensity was higher in Kane'ohe Bay than on Mafia Island. However, we still suggest that efforts to reduce non-indigenous E. denticulatum should include protection of important herbivores in both sites because of the high levels of grazing close to AOI. Moreover, we recommend that areas with hard substrate and high structural complexity should be avoided when farming non-indigenous strains of E. denticulatum

    Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes

    Get PDF
    Ecosystems are linked by the movement of organisms across habitat boundaries and the arrangement of habitat patches can affect species abundance and composition. In tropical seascapes many coral reef fishes settle in adjacent habitats and undergo onto-genetic habitat shifts to coral reefs as they grow. Few studies have attempted to measure at what distances from nursery habitats these fish migrations (connectivity) cease to exist and how the abundance, biomass and proportion of nursery species change on coral reefs along distance gradients away from nursery areas. The present study examines seascape spatial arrangement, including distances between habitats, and its con-sequences on connectivity within a tropical seascape in Mozambique using a seascape ecology approach. Fish and habitat surveys were undertaken in 2016/2017 and a thematic habitat map was created in ArcGIS, where cover and distances between habitat patches were calculated. Distance to mangroves and seagrasses were significant predictors for abundance and biomass of most nursery species. The proportions of nursery species were highest in the south of the archipelago, where mangroves were present and decreased with distance to nurseries (mangroves and seagrasses). Some nursery species were absent on reef sites farthest from nursery habitats, at 80 km from mangroves and at 12 km from seagrass habitats. The proportion of nursery/non-nursery snapper and parrotfish species, as well as abundance and biomass of seagrass nursery species abruptly declined at 8 km from seagrass habitats, indicating a threshold distance at which migrations may cease. Additionally, reefs isolated by large stretches of sand and deep water had very low abundances of several nursery species despite being within moderate distances from nursery habitats. This highlights the importance of considering the matrix (sand and deep water) as barriers for fish migration

    Thresholds in seascape connectivity: the spatial arrangement of nursery habitats structure fish communities on nearby reefs

    Get PDF
    Ecosystems are linked by the movement of organisms across habitat boundaries and the arrangement of habitat patches can affect species abundance and composition. In tropical seascapes many coral reef fishes settle in adjacent habitats and undergo ontogenetic habitat shifts to coral reefs as they grow. Few studies have attempted to measure at what distances from nursery habitats these fish migrations (connectivity) cease to exist and how the abundance, biomass and proportion of nursery species change on coral reefs along distance gradients away from nursery areas. The present study examines seascape spatial arrangement, including distances between habitats, and its consequences on connectivity within a tropical seascape in Mozambique using a seascape ecology approach. Fish and habitat surveys were undertaken in 2016/2017 and a thematic habitat map was created in ArcGIS, where cover and distances between habitat patches were calculated. Distance to mangroves and seagrasses were significant predictors for abundance and biomass of most nursery species. The proportions of nursery species were highest in the south of the archipelago, where mangroves were present and decreased with distance to nurseries (mangroves and seagrasses). Some nursery species were absent on reef sites farthest from nursery habitats, at 80 km from mangroves and at 12 km from seagrass habitats. The proportion of nursery/non-nursery snapper and parrotfish species, as well as abundance and biomass of seagrass nursery species abruptly declined at 8 km from seagrass habitats, indicating a threshold distance at which migrations may cease. Additionally, reefs isolated by large stretches of sand and deep water had very low abundances of several nursery species despite being within moderate distances from nursery habitats. This highlights the importance of considering the matrix (sand and deep water) as barriers for fish migration

    Where the grass is greenest in seagrass seascapes depends on life history and simple species traits of fish

    Get PDF
    Tropical seagrass meadows are critical habitats for many fish species, yet few studies have investigated the influence of multiple scale-dependent factors and marine protected areas on seagrass fish species of differing life histories. We assessed the influence of fine-scale seagrass meadow characteristics and seascape-scale variables on the abundance of fish in a seagrass-dominated seascape in the Bazaruto Archipelago, Mozambique, particularly examining patterns of nursery- vs. resident species as well as mobile- vs. sedentary species. We found that fish distribution patterns in this seagrass-dominated seascape were dependent on species' life history characteristics; nursery taxa showed lower abundance in seagrass meadows further from adult reef habitats, while resident species within seagrass meadows occurred in higher abundances far from reefs. For taxa utilizing both mangroves and seagrass meadows as nursery habitat, proximity to mangroves was an important factor. Fish abundances were generally influenced by variables at the seascape scale (km), while sedentary species were predominantly influenced by area variables, and smaller seascapes (<500 m in radius) better explained distribution patterns. The influence of marine protected areas was taxon-specific, with the strongest effects of protection on resident species. Our results indicate that protection efforts in seagrass-dominated seascapes can have varying impacts on fish distribution, depending on the life history of the species present, and the geographical placement of the reserve within the seascape. Further, we suggest that simple species attributes can be utilised to describe generalized abundance patterns of fish in seagrass seascapes

    Long-term effects of no-take zones in Swedish waters

    Get PDF
    Marine protected areas (MPAs) are increasingly established worldwide to protect and restore degraded ecosystems. However, the level of protection varies among MPAs and has been found to affect the outcome of the closure. In no-take zones (NTZs), no fishing or extraction of marine organisms is allowed. The EU Commission recently committed to protect 30% of European waters by 2030 through the updated Biodiversity Strategy. Importantly, one third of these 30% should be of strict protection. Exactly what is meant by strict protection is not entirely clear, but fishing would likely have to be fully or largely prohibited in these areas. This new target for strictly protected areas highlights the need to evaluate the ecological effects of NTZs, particularly in regions like northern Europe where such evaluations are scarce. The Swedish NTZs made up approximately two thirds of the total areal extent of NTZs in Europe a decade ago. Given that these areas have been closed for at least 10 years and can provide insights into long-term effects of NTZs on fish and ecosystems, they are of broad interest in light of the new 10% strict protection by 2030 commitment by EU member states.In total, eight NTZs in Swedish coastal and offshore waters were evaluated in the current report, with respect to primarily the responses of focal species for the conservation measure, but in some of the areas also ecosystem responses. Five of the NTZs were established in 2009-2011, as part of a government commission, while the other three had been established earlier. The results of the evaluations are presented in a synthesis and also in separate, more detailed chapters for each of the eight NTZs. Overall, the results suggest that NTZs can increase abundances and biomasses of fish and decapod crustaceans, given that the closed areas are strategically placed and of an appropriate size in relation to the life cycle of the focal species. A meta-regression of the effects on focal species of the NTZs showed that CPUE was on average 2.6 times higher after three years of protection, and 3.8 times higher than in the fished reference areas after six years of protection. The proportion of old and large individuals increased in most NTZs, and thereby also the reproductive potential of populations. The increase in abundance of large predatory fish also likely contributed to restoring ecosystem functions, such as top-down control. These effects appeared after a 5-year period and in many cases remained and continued to increase in the longer term (>10 years). In the two areas where cod was the focal species of the NTZs, positive responses were weak, likely as an effect of long-term past, and in the Kattegat still present, recruitment overfishing. In the Baltic Sea, predation by grey seal and cormorant was in some cases so high that it likely counteracted the positive effects of removing fisheries and led to stock declines in the NTZs. In most cases, the introduction of the NTZs has likely decreased the total fishing effort rather than displacing it to adjacent areas. In the Kattegat NTZ, however, the purpose was explicitly to displace an unselective coastal mixed bottom-trawl fishery targeting Norway lobster and flatfish to areas where the bycatches of mature cod were smaller. In two areas that were reopened to fishing after 5 years, the positive effects of the NTZs on fish stocks eroded quickly to pre-closure levels despite that the areas remained closed during the spawning period, highlighting that permanent closures may be necessary to maintain positive effects.We conclude from the Swedish case studies that NTZs may well function as a complement to other fisheries management measures, such as catch, effort and gear regulations. The experiences from the current evaluation show that NTZs can be an important tool for fisheries management especially for local coastal fish populations and areas with mixed fisheries, as well as in cases where there is a need to counteract adverse ecosystem effects of fishing. NTZs are also needed as reference for marine environmental management, and for understanding the effects of fishing on fish populations and other ecosystem components in relation to other pressures. MPAs where the protection of both fish and their habitats is combined may be an important instrument for ecosystembased management, where the recovery of large predatory fish may lead to a restoration of important ecosystem functions and contribute to improving decayed habitats.With the new Biodiversity Strategy, EUs level of ambition for marine conservation increases significantly, with the goal of 30% of coastal and marine waters protected by 2030, and, importantly, one third of these areas being strictly protected. From a conservation perspective, rare, sensitive and/or charismatic species or habitats are often in focus when designating MPAs, and displacement of fisheries is then considered an unwanted side effect. However, if the establishment of strictly protected areas also aims to rebuild fish stocks, these MPAs should be placed in heavily fished areas and designed to protect depleted populations by accounting for their home ranges to generate positive outcomes. Thus, extensive displacement of fisheries is required to reach benefits for depleted populations, and need to be accounted for e.g. by specific regulations outside the strictly protected areas. These new extensive EU goals for MPA establishment pose a challenge for management, but at the same time offer an opportunity to bridge the current gap between conservation and fisheries management
    • …
    corecore