4,535 research outputs found

    Performance, emissions, and physical characteristics of a rotating combustion aircraft engine

    Get PDF
    The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested

    Recovery from Hepatorenal Syndrome after Orthotopic Liver Transplantation

    Get PDF
    Three patients with progressive renal failure and advanced hepatic insufficiency due to cirrhosis of the liver underwent orthotopic liver transplantation. All three patients had immediate improvement in hepatic function and within two weeks after liver replacement regained nearly normal kidney function. However, the renal recovery was delayed in each case, and its course was not uniform. Plasma renin activity was high, and renin substrate was low before transplantation in one case in which these measurements were obtained; both returned to normal soon after liver replacement. (N Engl J Med 289:1155–1159, 1973). © 1973, Massachusetts Medical Society. All rights reserved

    Structure of Dipalmitoylphosphatidylcholine/Cholesterol Bilayer at Low and High Cholesterol Concentrations: Molecular Dynamics Simulation

    Get PDF
    By using molecular dynamics simulation technique we studied the changes occurring in membranes constructed of dipalmitoylphosphatidylcholine (DPPC) and cholesterol at 8:1 and 1:1 ratios. We tested two different initial arrangements of cholesterol molecules for a 1:1 ratio. The main difference between two initial structures is the average number of nearest-neighbor DPPC molecules around the cholesterol molecule. Our simulations were performed at constant temperature (T = 50 degrees C) and pressure (P = 0 atm). Durations of the runs were 2 ns. The structure of the DPPC/cholesterol membrane was characterized by calculating the order parameter profiles for the hydrocarbon chains, atom distributions, average number of gauche defects, and membrane dipole potentials. We found that adding cholesterol to membranes results in a condensing effect: the average area of membrane becomes smaller, hydrocarbon chains of DPPC have higher order, and the probability of gauche defects in DPPC tails is lower. Our results are in agreement with the data available from experiments

    Protective Places: the Relationship between Neighborhood Quality and Preterm Births to Black Women in Oakland, California (2007–2011)

    Get PDF
    Black women have the highest incidence of preterm birth (PTB). Upstream factors, including neighborhood context, may be key drivers of this increased risk. This study assessed the relationship between neighborhood quality, defined by the Healthy Places Index, and PTB among Black women who lived in Oakland, California, and gave birth between 2007 and 2011 (N = 5418 women, N = 107 census tracts). We found that, compared with those living in lower quality neighborhoods, women living in higher quality neighborhoods had 20–38% lower risk of PTB, independent of confounders. Findings have implications for place-based research and interventions to address racial inequities in PTB

    On the photoionization of the outer electrons in noble gas endohedral atoms

    Full text link
    We demonstrate the prominent modification of the outer shell photoionization cross-section in noble gas (NG) endohedral atoms NG@F under the action of the fullerene F electron shell. This shell leads to two important effects, namely to strong enhancement of the cross-section due to fullerenes shell polarization under the action of the incoming electromagnetic wave and to prominent oscillation of this cross-section due to the reflection of the photoelectron from NG by the F shell. All but He noble gas atoms are considered. The polarization of the fullerene shell is expressed via the total photoabsorption cross-section of F. The reflection of the photoelectron is taken into account in the frame of the so-called bubble potential that is a spherical zero --thickness potential. It is assumed in the derivations that NG is centrally located in the fullerene. It is assumed also, in accord with the existing experimental data, that the fullerenes radius R is much bigger than the atomic radius and the thickness of the fullerenes shell . These assumptions permit, as it was demonstrated recently, to present the NG@F photoionization cross-section as a product of the NG cross-section and two well defined calculated factors.Comment: 19 pages, 9 figure

    Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals.

    Get PDF
    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.T.J.Z. acknowledges the support of EPSRC under Grant No. EP/J017639/1 and the ARCHER eCSE programme. M.C.P. and P.D.H. acknowledge the support of EPSRC under Grant No. EP/J015059/1. The underlying data of this publication can be accessed via the following persistent URI: https://www.repository.cam.ac.uk/handle/1810/251293This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.493628

    Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals.

    Get PDF
    BackgroundThe SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals.Methodology/principal findingsEndpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions.ConclusionGiven the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans

    Self-similar magnetoresistance of Fibonacci ultrathin magnetic films

    Full text link
    We study numerically the magnetic properties (magnetization and magnetoresistance) of ultra-thin magnetic films (Fe/Cr) grown following the Fibonacci sequence. We use a phenomenological model which includes Zeeman, cubic anisotropy, bilinear and biquadratic exchange energies. Our physical parameters are based on experimental data recently reported, which contain biquadratic exchange coupling with magnitude comparable to the bilinear exchange coupling. When biquadratic exchange coupling is sufficiently large a striking self-similar pattern emerges.Comment: 5 pages, 5 EPS figures, REVTeX, accepted for publication in Phys. Rev.
    • …
    corecore