9 research outputs found

    De Pelgrimstocht Der Menschheid

    No full text
    ill,883hal,25c

    Temporal evolution of focal brain ischemia in the rat assessed by T2-weighted and diffusion-weighted Magnetic Resonance Imaging

    No full text
    The present study was undertaken to characterize the formation of ischemic brain edema using diffusion-weighted and T2-weighted magnetic resonance imaging in a rat model of focal ischemia. The extent of edema formation was measured from multislice diffusion-weighted and T2-weighted spin-echo images acquired at various times after ischemia. The spin-spin relaxation time (T2) and the apparent diffusion coefficient in normal and ischemic tissue were also determined. The results show that on the diffusion-weighted images the lesion was clearly visible at 30 minutes after ischemia, while on the T2-weighted images it became increasingly evident after 2-3 hours. On both types of images the hyperintense area increased in size over the first 48 hours. After 1 week the hyperintensity on the diffusion-weighted images rapidly disappeared and evolved as a hypointense lesion in the chronic phase. These results confirm the high sensitivity of diffusion-weighted MRI for the detection of early ischemia. The temporal course of the edema observed on T2W-images is in agreement with the reported increase of total water content occurring in this model. The increase of the lesion observed on the diffusion-weighted images during the first 2 days points to an aggravation of cytotoxic edema that parallels the changes in free water shown by the T2-weighted images. It is shown that the highly elevated T2's of the infarcted area several days after ischemia can substantially contaminate the diffusion-weighted images

    Temporal evolution of focal brain ischemia in the rat assessed by T2-weighted and diffusion-weighted Magnetic Resonance Imaging

    No full text
    The present study was undertaken to characterize the formation of ischemic brain edema using diffusion-weighted and T2-weighted magnetic resonance imaging in a rat model of focal ischemia. The extent of edema formation was measured from multislice diffusion-weighted and T2-weighted spin-echo images acquired at various times after ischemia. The spin-spin relaxation time (T2) and the apparent diffusion coefficient in normal and ischemic tissue were also determined. The results show that on the diffusion-weighted images the lesion was clearly visible at 30 minutes after ischemia, while on the T2-weighted images it became increasingly evident after 2-3 hours. On both types of images the hyperintense area increased in size over the first 48 hours. After 1 week the hyperintensity on the diffusion-weighted images rapidly disappeared and evolved as a hypointense lesion in the chronic phase. These results confirm the high sensitivity of diffusion-weighted MRI for the detection of early ischemia. The temporal course of the edema observed on T2W-images is in agreement with the reported increase of total water content occurring in this model. The increase of the lesion observed on the diffusion-weighted images during the first 2 days points to an aggravation of cytotoxic edema that parallels the changes in free water shown by the T2-weighted images. It is shown that the highly elevated T2's of the infarcted area several days after ischemia can substantially contaminate the diffusion-weighted images

    Temporal evolution of NMDA-induced excitoxicity in the neonatal rat brain as measured with 1H Nuclear Magnetic Resonance Imaging

    No full text
    The aim of this study is to characterize the evolution of excitotoxic damage in neonatal rat brain by diffusion-weighted and T2-weighted magnetic resonance imaging. Results are compared with histological findings. Magnetic resonance imaging was performed at various times (15 min, 24 h, 3 days and 5 days) after intrastriatal microinjection of N-methyl-d-aspartate (NMDA) at postnatal day 8. The transverse relaxation time (T2) and apparent diffusion coefficient of water were determined. The results show an acute reduction of the apparent diffusion coefficient, reflected by an ipsilateral hyperintensity in the diffusion-weighted images, within 15 min after intrastriatal NMDA injection. At this time no changes in the T2-weighted images were apparent. The volume of the hyperintensity was relatively large with a radius of approximately 2 mm and coincided with histological signs of pronounced karyo-dendritic swelling. Subcutaneous administration of MK-801 25 min after the intracerebral NMDA injection readily reversed the hyperintensity and resulted in complete protection as verified by histology. Areas with increased T2 values were observed 1 day after NMDA microinjection and corresponded to regions with obvious cell necrosis. Five days after NMDA injection the lesion was evident using both diffusion- and T2-weighted images and coincided with an overt lesion comprising areas of cell loss and dilatation of the ipsilateral ventricle. In conclusion, this study illustrates the possibility of using diffusion-weighted imaging as a tool to monitor efficacy of treatment strategies at an early stage of excitotoxic injury

    Focal ischemia in cat brain as studied by diffusion-weighted and dynamic susceptibility-contrast magnetic resonance imaging

    No full text
    Diffusion-weighted and susceptibility-contrast-enhanced magnetic resonance imaging were used to monitor the development of focal ischemia in cat brain. Diffusion-sensitized imaging was used to assess early ischemic tissue damage which was confirmed for the latest time point (12 h) with postmortem histological analysis.T*2-sensitized FLASH was used to measure the first passage of a bolus of FeO particles. Gamma function fitting of R*2-time curves resulted in 2D maps of relative hemodynamic parameters, including cerebral blood volume and flow. The present data provide indications for cerebral blood flow thresholds for acute as well as for delayed ischemic tissue damage

    Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery

    No full text
    Approaches through the temporal bone require surgeons to drill away bone to expose a target skull base lesion while evading vital structures contained within it, such as the sigmoid sinus, jugular bulb, and facial nerve. We hypothesize that an augmented neuronavigation system that continuously calculates the distance to these structures and warns if the surgeon drills too close, will aid in making safe surgical approaches. Contemporary image guidance systems are lacking an automated method to segment the inhomogeneous and complexly curved facial nerve. Therefore, we developed a segmentation method to delineate the intra-temporal facial nerve centerline from clinically available temporal bone CT images semi-automatically. Our method requires the user to provide the start- and end-point of the facial nerve in a patient's CT scan, after which it iteratively matches an active appearance model based on the shape and texture of forty facial nerves. Its performance was evaluated on 20 patients by comparison to our gold standard: manually segmented facial nerve centerlines. Our segmentation method delineates facial nerve centerlines with a maximum error along its whole trajectory of 0.40±0.20 mm (mean±standard deviation). These results demonstrate that our model-based segmentation method can robustly segment facial nerve centerlines. Next, we can investigate whether integration of this automated facial nerve delineation with a distance calculating neuronavigation interface results in a system that can adequately warn surgeons during temporal bone drilling, and effectively diminishes risks of iatrogenic facial nerve palsy. © 2011 SPIE

    Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery

    No full text
    Approaches through the temporal bone require surgeons to drill away bone to expose a target skull base lesion while evading vital structures contained within it, such as the sigmoid sinus, jugular bulb, and facial nerve. We hypothesize that an augmented neuronavigation system that continuously calculates the distance to these structures and warns if the surgeon drills too close, will aid in making safe surgical approaches. Contemporary image guidance systems are lacking an automated method to segment the inhomogeneous and complexly curved facial nerve. Therefore, we developed a segmentation method to delineate the intra-temporal facial nerve centerline from clinically available temporal bone CT images semi-automatically. Our method requires the user to provide the start- and end-point of the facial nerve in a patient's CT scan, after which it iteratively matches an active appearance model based on the shape and texture of forty facial nerves. Its performance was evaluated on 20 patients by comparison to our gold standard: manually segmented facial nerve centerlines. Our segmentation method delineates facial nerve centerlines with a maximum error along its whole trajectory of 0.40±0.20 mm (mean±standard deviation). These results demonstrate that our model-based segmentation method can robustly segment facial nerve centerlines. Next, we can investigate whether integration of this automated facial nerve delineation with a distance calculating neuronavigation interface results in a system that can adequately warn surgeons during temporal bone drilling, and effectively diminishes risks of iatrogenic facial nerve palsy. © 2011 SPIE
    corecore