38 research outputs found

    Wavelet-based Gaussian-mixture hidden Markov model for the detection of multistage seizure dynamics: A proof-of-concept study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epilepsy is a common neurological disorder characterized by recurrent electrophysiological activities, known as seizures. Without the appropriate detection strategies, these seizure episodes can dramatically affect the quality of life for those afflicted. The rationale of this study is to develop an unsupervised algorithm for the detection of seizure states so that it may be implemented along with potential intervention strategies.</p> <p>Methods</p> <p>Hidden Markov model (HMM) was developed to interpret the state transitions of the <it>in vitro </it>rat hippocampal slice local field potentials (LFPs) during seizure episodes. It can be used to estimate the probability of state transitions and the corresponding characteristics of each state. Wavelet features were clustered and used to differentiate the electrophysiological characteristics at each corresponding HMM states. Using unsupervised training method, the HMM and the clustering parameters were obtained simultaneously. The HMM states were then assigned to the electrophysiological data using expert guided technique. Minimum redundancy maximum relevance (mRMR) analysis and Akaike Information Criterion (AICc) were applied to reduce the effect of over-fitting. The sensitivity, specificity and optimality index of chronic seizure detection were compared for various HMM topologies. The ability of distinguishing early and late tonic firing patterns prior to chronic seizures were also evaluated.</p> <p>Results</p> <p>Significant improvement in state detection performance was achieved when additional wavelet coefficient rates of change information were used as features. The final HMM topology obtained using mRMR and AICc was able to detect non-ictal (interictal), early and late tonic firing, chronic seizures and postictal activities. A mean sensitivity of 95.7%, mean specificity of 98.9% and optimality index of 0.995 in the detection of chronic seizures was achieved. The detection of early and late tonic firing was validated with experimental intracellular electrical recordings of seizures.</p> <p>Conclusions</p> <p>The HMM implementation of a seizure dynamics detector is an improvement over existing approaches using visual detection and complexity measures. The subjectivity involved in partitioning the observed data prior to training can be eliminated. It can also decipher the probabilities of seizure state transitions using the magnitude and rate of change wavelet information of the LFPs.</p

    Daily Rhythmic Behaviors and Thermoregulatory Patterns Are Disrupted in Adult Female MeCP2-Deficient Mice

    Get PDF
    Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG) activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities

    Low-to-High Cross-Frequency Coupling in the Electrical Rhythms as Biomarker for Hyperexcitable Neuro-Glial Networks of the Brain

    No full text
    Objective: One of the features used in the study of hyperexcitablility are high frequency oscillations (HFOs, >80Hz). HFOs have been reported in the electrical rhythms of the brain's neuro-glial networks under physiological and pathological conditions. Cross-frequency coupling (CFC) of HFOs with low frequency rhythms was used to identify pathologic HFOs (pHFOs) (i) in the epileptogenic zones of epileptic patients, and (ii) as a biomarker for the severity of seizure-like events in genetically modified rodent models. We describe a model to replicate reported CFC features extracted from recorded local field potentials (LFPs) representing network properties. Methods: This study deals with a 4-unit neuro-glial cellular network model where each unit incorporates pyramidal cells, interneurons and astrocytes. Three different pathways of hyperexcitability generation - Na+-K+ ATPase pump, glial potassium clearance, and potassium afterhyperpolarization channel - were used to generate LFPs. Changes in excitability, average spontaneous electrical discharge (SED) duration and CFC were then measured and analyzed. Results: Each parameter caused an increase in network excitability and the consequent lengthening of the SED duration. Short SEDs showed CFC between HFOs and theta oscillations (4-8 Hz), but in longer SEDs the low frequency changed to the delta range (1-4 Hz). Conclusion: Longer duration SEDs exhibit CFC features similar to those reported by our team. Significance: (i) Identifying the exponential relationship between network excitability and SED durations, (ii) highlighting the importance of glia in hyperexcitability (as they relate to extracellular potassium), and (iii) elucidation of the biophysical basis for CFC coupling features

    Neuronal Electrical Rhythms Described by Composite Mapped Clock Oscillators

    No full text
    corecore