1 research outputs found

    Darboux transformations of coherent states of the time-dependent singular oscillator

    Full text link
    Darboux transformation of both Barut-Girardello and Perelomov coherent states for the time-dependent singular oscillator is studied. In both cases the measure that realizes the resolution of the identity operator in terms of coherent states is found and corresponding holomorphic representation is constructed. For the particular case of a free particle moving with a fixed value of the angular momentum equal to two it is shown that Barut-Giriardello coherent states are more localized at the initial time moment while the Perelomov coherent states are more stable with respect to time evolution. It is also illustrated that Darboux transformation may keep unchanged this different time behavior.Comment: 13 page
    corecore