18 research outputs found

    Evaluation of stem borer resistance management strategies for Bt maize in Kenya based on alternative host refugia

    Get PDF
    Stem borers are the major insect pests of maize in Kenya. The use of Bacillus thuringiensis (Bt) technology is an effective way of controlling lepidopteran pests. However, the likelihood of development of resistance to the Bt toxins by the target stem borer species is a concern. Forages, sorghum and maize varieties were evaluated for stem borer preference and survivorship in the laboratory and field in four locations in Kenya to identify suitable species and varieties for refugia. The economics of using the different kinds of refugia was also investigated. Vegetation surveys were conducted in 15 districts of Kenya to quantify the area covered by natural refugia. The field and laboratory trials indicated highest egg production, survivorship and more exit holes in all sorghum and maize varieties and some forages. Sorghum, non-Bt Maize, and improved Napier grass varieties Kakamega 1 and Kakamega 2) should be promoted as refugia species in Kenya. Some species and cultivars were identified as cost-effective, flexible, easily adoptable and compatible with farmers’ common production practices. Refugia cultivar with multiple uses is expected to give higher pay-offs than one with single use. However, for successful management of a refugia strategy, strict stewardship is required from appropriate government or community institutions.Key words: Refugia, cost-benefit analysis, Bt-maize, insect pest resistance management

    Testing public Bt maize events for control of stem borers in the first confined field trials in Kenya

    Get PDF
    Transgenic maize (Zea mays L), developed using modified genes from the bacterium Bacillus thuringiensis (Bt), controls stem borers without observable negative effects to humans, livestock or the environment, and is now sown on 134 million hectares globally. Bt maize could contribute to increasing maize production in Kenya. Nine public Bt maize events of cry1Ab and cry1Ba genes were tested in confined field trials site (CFTs) to assess the control of four major Kenyan stem borer species. Leaf damage rating, number of exit holes and tunnel length were scored in the field evaluations. Leaf area consumed and mortality rates among stem borers were scored in the leaf bioassays in a Biosafety Level II laboratory, located at the Kenya Agricultural Research Institute (KARI), National Agricultural Research Laboratories (NARL). Field evaluations showed that Bt maize controlled Chilo partellus with mean damage scores of 1.2 against 2.7 for the non-Bt CML216 control. Laboratory bioassays showed high control for Eldana saccharina and Sesamia calamistis, with mean larval mortality of 64 and 92%, respectively. However, substantial control was not observed for Busseola fusca. These results showed that Bt maize could control three of the four major stem borers in Kenya with mortality records of 52.7% for B. fusca, 62.3% for E. saccharina and 85.8% for S. calamistis. Additional Bt genes need to be sought and tested for effective stem borer control in all maize growing ecologies in Kenya.Key words: Maize, Bt, stem borers, confined field trials

    The Present and Future Role of Insect-Resistant Genetically Modified Maize in IPM

    Get PDF
    Commercial, genetically-modified (GM) maize was first planted in the United States (USA, 1996) and Canada (1997) but now is grown in 13 countries on a total of over 35 million hectares (\u3e24% of area worldwide). The first GM maize plants produced a Cry protein derived from the soil bacteriumBacillus thuringiensis (Bt), which made them resistant to European corn borer and other lepidopteran maize pests. New GM maize hybrids not only have resistance to lepidopteran pests but some have resistance to coleopteran pests and tolerance to specific herbicides. Growers are attracted to the Btmaize hybrids for their convenience and because of yield protection, reduced need for chemical insecticides, and improved grain quality. Yet, most growers worldwide still rely on traditional integrated pest management (IPM) methods to control maize pests. They must weigh the appeal of buying insect protection “in the bag” against questions regarding economics, environmental safety, and insect resistance management (IRM). Traditional management of maize insects and the opportunities and challenges presented by GM maize are considered as they relate to current and future insect-resistant products. Four countries, two that currently have commercialize Bt maize (USA and Spain) and two that do not (China and Kenya), are highlighted. As with other insect management tactics (e.g., insecticide use or tillage), GM maize should not be considered inherently compatible or incompatible with IPM. Rather, the effect of GM insect-resistance on maize IPM likely depends on how the technology is developed and used

    Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens.

    Get PDF
    Plants frequently suffer attack from herbivores and microbial pathogens, and have evolved a complex array of defence mechanisms to resist defoliation and disease. These include both preformed defences, ranging from structural features to stores of toxic secondary metabolites, and inducible defences, which are activated only after an attack is detected. It is well known that plant defences against pests and pathogens are commonly affected by environmental conditions, but the mechanisms by which responses to the biotic and abiotic environments interact are only poorly understood. In this review, we consider the impact of light on plant defence, in terms of both plant life histories and rapid scale molecular responses to biotic attack. We bring together evidence that illustrates that light not only modulates defence responses via its influence on biochemistry and plant development but, in some cases, is essential for the development of resistance. We suggest that the interaction between the light environment and plant defence is multifaceted, and extends across different temporal and biological scales
    corecore