2,748 research outputs found

    Statistical tests of sterile neutrinos using cosmology and short-baseline data

    Get PDF
    In this paper we revisit the question of the information which cosmology provides on the scenarios with sterile neutrinos invoked to describe the SBL anomalies using Bayesian statistical tests. We perform an analysis of the cosmological data in Λ\LambdaCDM+r+νs+r+\nu_s cosmologies for different cosmological data combinations, and obtain the marginalized cosmological likelihood in terms of the two relevant parameters, the sterile neutrino mass msm_s and its contribution to the energy density of the early Universe NeffN_{\rm eff}. We then present an analysis to quantify at which level a model with one sterile neutrino is (dis)favoured with respect to a model with only three active neutrinos, using results from both short-baseline experiments and cosmology. We study the dependence of the results on the cosmological data considered, in particular on the inclusion of the recent BICEP2 results and the SZ cluster data from the Planck mission. We find that only when the cluster data is included the model with one extra sterile neutrino can become more favoured that the model with only the three active ones provided the sterile neutrino contribution to radiation density is suppressed with respect to the fully thermalized scenario. We have also quantified the level of (in)compatibility between the sterile neutrino masses implied by the cosmological and SBL results.Comment: 23 pages, 4 figure

    Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites

    Full text link
    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure

    Two photon annihilation of Kaluza-Klein dark matter

    Full text link
    We investigate the fermionic one-loop cross section for the two photon annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray line with energy equal to the KK dark matter particle mass. We find that the cross section is large enough that if a continuum signature is detected, the energy distribution of gamma-rays should end at the particle mass with a peak that is visible for an energy resolution of the detector at the percent level. This would give an unmistakable signature of a dark matter origin of the gamma-rays, and a unique determination of the dark matter particle mass, which in the case studied should be around 800 GeV. Unlike the situation for supersymmetric models where the two-gamma peak may or may not be visible depending on parameters, this feature seems to be quite robust in UED models, and should be similar in other models where annihilation into fermions is not helicity suppressed. The observability of the signal still depends on largely unknown astrophysical parameters related to the structure of the dark matter halo. If the dark matter near the galactic center is adiabatically contracted by the central star cluster, or if the dark matter halo has substructure surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio

    Neutralino Annihilation into a Photon and a Z boson

    Get PDF
    A full one-loop calculation of neutralino S-wave annihilation into the ZγZ\gamma final state is performed in the minimal supersymmetric extension of the Standard Model. This process, like the similar one with two photons in the final state, may be of importance for the indirect detection of supersymmetric dark matter through the very narrow γ\gamma ray line that would result from neutralino annihilations in the galactic halo. We give the complete analytical formulas for this loop-induced process and treat the case of a pure Higgsino as a first application of our expressions. Predictions for the gamma line flux are given for the halo model which is of the form suggested by Kravtsov et al. and for the profile proposed by Navarro, Frenk and White. For heavy neutralinos, the lines from 2γ2\gamma and ZγZ\gamma would have indistiguishable energy in a realistic detector, making the fluxes add and facilitating discovery. For lighter neutralinos, the positions and relative strengths of the two lines would give valuable information on the nature of the supersymmetric dark matter particles.Comment: 19 pages, LaTeX, 6 eps figures. Some formulas corrected, improved discussion of halo models, results and conclusions unchanged. Version to appear in Phys. Rev.

    Tentative detection of the gravitational magnification of type Ia supernovae

    Get PDF
    The flux from distant type Ia supernovae (SN) is likely to be amplified or de-amplified by gravitational lensing due to matter distributions along the line-of-sight. A gravitationally lensed SN would appear brighter or fainter than the average SN at a particular redshift. We estimate the magnification of 26 SNe in the GOODS fields and search for a correlation with the residual magnitudes of the SNe. The residual magnitude, i.e. the difference between observed and average magnitude predicted by the "concordance model" of the Universe, indicates the deviation in flux from the average SN. The linear correlation coefficient for this sample is r=0.29. For a similar, but uncorrelated sample, the probability of obtaining a correlation coefficient equal to or higher than this value is ~10%, i.e. a tentative detection of lensing at ~90% confidence level. Although the evidence for a correlation is weak, our result is in accordance with what could be expected given the small size of the sample.Comment: 7 pages, 2 figure

    Running mass of the rho0 meson's implication for the dilepton mass spectrum and the mu+mu-/e+e- branching ratio in the K+ --> pi+l+l- decays

    Full text link
    We make an attempt to resolve the discrepancy of the observed e+e- mass spectrum in the K+ --> pi+e+e- decay with that predicted by meson dominance. To this end we investigate the properties of the rho0 propagator. We use dispersion relations to evaluate the running mass squared m_rho^2(t) of the rho0 resonance without adjustable parameters. To improve the convergence of the dispersion integral, the momentum dependence of strong vertices is taken from the flux-tube-breaking model of Kokoski and Isgur. The obtained behavior of m_rho^2(t) at small momentum squared t makes the K+ --> pi+e+e- form factor rise faster with increasing tt than in the original meson-dominance calculation and more in agreement with the published data. As a consequence, the meson-dominance prediction of the mu+mu-/e+e- branching ratio changes slightly, from 0.224 to 0.236. We do not see any possibility to accommodate into the meson-dominance approach an even steeper e+e- spectrum, indicated by the preliminary data of the E865 collaboration at BNL AGS.Comment: 13 pages, RevTeX, epsf.sty, 4 embedded figure

    Constraining dark energy

    Full text link
    In this paper we propose a mechanism that protects theories violating a holographic bound suggested in arXiv:1203.5476 from developing accelerated expansion. The mechanism builts on work on transplanckian physics, and a non-trivial choice of vacuum states. If correct, it lends further support for detectable signatures in the CMBR signalling new physics.Comment: 8 pages. arXiv admin note: text overlap with arXiv:astro-ph/0606474. Minor misprints correcte

    Non-Baryonic Dark Matter - Observational Evidence and Detection Methods

    Get PDF
    The evidence for the existence of dark matter in the universe is reviewed. A general picture emerges, where both baryonic and non-baryonic dark matter is needed to explain current observations. In particular, a wealth of observational information points to the existence of a non-baryonic component, contributing between around 20 and 40 percent of the critical mass density needed to make the universe geometrically flat on large scales. In addition, an even larger contribution from vacuum energy (or cosmological constant) is indicated by recent observations. To the theoretically favoured particle candidates for non-baryonic dark matter belong axions, supersymmetric particles, and of less importance, massive neutrinos. The theoretical foundation and experimental situation for each of these is reviewed. Direct and indirect methods for detection of supersymmetric dark matter are described in some detail. Present experiments are just reaching the required sensitivity to discover or rule out some of these candidates, and major improvements are planned over the coming years.Comment: Submitted to Reports on Progress in Physics, 59 pages, LaTeX, iopart macro, 14 embedded postscript figure

    Functional Properties of Subretinal Transplants in Rabbit

    Get PDF
    corecore