1,320 research outputs found

    Unique characterization of the Bel-Robinson tensor

    Full text link
    We prove that a completely symmetric and trace-free rank-4 tensor is, up to sign, a Bel-Robinson type tensor, i.e., the superenergy tensor of a tensor with the same algebraic symmetries as the Weyl tensor, if and only if it satisfies a certain quadratic identity. This may be seen as the first Rainich theory result for rank-4 tensors.Comment: extended version, 13 pages, shorter version published in Class.Quant.Gra

    Algebraic Rainich theory and antisymmetrisation in higher dimensions

    Full text link
    The classical Rainich(-Misner-Wheeler) theory gives necessary and sufficient conditions on an energy-momentum tensor TT to be that of a Maxwell field (a 2-form) in four dimensions. Via Einstein's equations these conditions can be expressed in terms of the Ricci tensor, thus providing conditions on a spacetime geometry for it to be an Einstein-Maxwell spacetime. One of the conditions is that T2T^2 is proportional to the metric, and it has previously been shown in arbitrary dimension that any tensor satisfying this condition is a superenergy tensor of a simple pp-form. Here we examine algebraic Rainich conditions for general pp-forms in higher dimensions and their relations to identities by antisymmetrisation. Using antisymmetrisation techniques we find new identities for superenergy tensors of these general (non-simple) forms, and we also prove in some cases the converse; that the identities are sufficient to determine the form. As an example we obtain the complete generalisation of the classical Rainich theory to five dimensions.Comment: 16 pages, LaTe

    Two dimensional Sen connections and quasi-local energy-momentum

    Full text link
    The recently constructed two dimensional Sen connection is applied in the problem of quasi-local energy-momentum in general relativity. First it is shown that, because of one of the two 2 dimensional Sen--Witten identities, Penrose's quasi-local charge integral can be expressed as a Nester--Witten integral.Then, to find the appropriate spinor propagation laws to the Nester--Witten integral, all the possible first order linear differential operators that can be constructed only from the irreducible chiral parts of the Sen operator alone are determined and examined. It is only the holomorphy or anti-holomorphy operator that can define acceptable propagation laws. The 2 dimensional Sen connection thus naturally defines a quasi-local energy-momentum, which is precisely that of Dougan and Mason. Then provided the dominant energy condition holds and the 2-sphere S is convex we show that the next statements are equivalent: i. the quasi-local mass (energy-momentum) associated with S is zero; ii.the Cauchy development D(ÎŁ)D(\Sigma) is a pp-wave geometry with pure radiation (D(ÎŁ)D(\Sigma) is flat), where ÎŁ\Sigma is a spacelike hypersurface whose boundary is S; iii. there exist a Sen--constant spinor field (two spinor fields) on S. Thus the pp-wave Cauchy developments can be characterized by the geometry of a two rather than a three dimensional submanifold.Comment: 20 pages, Plain Tex, I

    Intermodulation electrostatic force microscopy for imaging surface photo-voltage

    Full text link
    We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photo-voltaic material.Comment: 4 pages, 3 figures, peer-reviewed, preprin

    Conserved Matter Superenergy Currents for Orthogonally Transitive Abelian G2 Isometry Groups

    Full text link
    In a previous paper we showed that the electromagnetic superenergy tensor, the Chevreton tensor, gives rise to a conserved current when there is a hypersurface orthogonal Killing vector present. In addition, the current is proportional to the Killing vector. The aim of this paper is to extend this result to the case when we have a two-parameter Abelian isometry group that acts orthogonally transitive on non-null surfaces. It is shown that for four-dimensional Einstein-Maxwell theory with a source-free electromagnetic field, the corresponding superenergy currents lie in the orbits of the group and are conserved. A similar result is also shown to hold for the trace of the Chevreton tensor and for the Bach tensor, and also in Einstein-Klein-Gordon theory for the superenergy of the scalar field. This links up well with the fact that the Bel tensor has these properties and the possibility of constructing conserved mixed currents between the gravitational field and the matter fields.Comment: 15 page

    Another positivity proof and gravitational energy localizations

    Full text link
    Two locally positive expressions for the gravitational Hamiltonian, one using 4-spinors the other special orthonormal frames, are reviewed. A new quadratic 3-spinor-curvature identity is used to obtain another positive expression for the Hamiltonian and thereby a localization of gravitational energy and positive energy proof. These new results provide a link between the other two methods. Localization and prospects for quasi-localization are discussed.Comment: 14 pages REVTe

    Two dimensional Sen connections in general relativity

    Full text link
    The two dimensional version of the Sen connection for spinors and tensors on spacelike 2-surfaces is constructed. A complex metric γAB\gamma_{AB} on the spin spaces is found which characterizes both the algebraic and extrinsic geometrical properties of the 2-surface $\$ . The curvature of the two dimensional Sen operator Δe\Delta_e is the pull back to $\$ of the anti-self-dual part of the spacetime curvature while its `torsion' is a boost gauge invariant expression of the extrinsic curvatures of $\$ . The difference of the 2 dimensional Sen and the induced spin connections is the anti-self-dual part of the `torsion'. The irreducible parts of Δe\Delta_e are shown to be the familiar 2-surface twistor and the Weyl--Sen--Witten operators. Two Sen--Witten type identities are derived, the first is an identity between the 2 dimensional twistor and the Weyl--Sen--Witten operators and the integrand of Penrose's charge integral, while the second contains the `torsion' as well. For spinor fields satisfying the 2-surface twistor equation the first reduces to Tod's formula for the kinematical twistor.Comment: 14 pages, Plain Tex, no report numbe

    Randomized Trials or Population-based Registries

    Get PDF

    The Chevreton Tensor and Einstein-Maxwell Spacetimes Conformal to Einstein Spaces

    Get PDF
    In this paper we characterize the source-free Einstein-Maxwell spacetimes which have a trace-free Chevreton tensor. We show that this is equivalent to the Chevreton tensor being of pure-radiation type and that it restricts the spacetimes to Petrov types \textbf{N} or \textbf{O}. We prove that the trace of the Chevreton tensor is related to the Bach tensor and use this to find all Einstein-Maxwell spacetimes with a zero cosmological constant that have a vanishing Bach tensor. Among these spacetimes we then look for those which are conformal to Einstein spaces. We find that the electromagnetic field and the Weyl tensor must be aligned, and in the case that the electromagnetic field is null, the spacetime must be conformally Ricci-flat and all such solutions are known. In the non-null case, since the general solution is not known on closed form, we settle with giving the integrability conditions in the general case, but we do give new explicit examples of Einstein-Maxwell spacetimes that are conformal to Einstein spaces, and we also find examples where the vanishing of the Bach tensor does not imply that the spacetime is conformal to a CC-space. The non-aligned Einstein-Maxwell spacetimes with vanishing Bach tensor are conformally CC-spaces, but none of them are conformal to Einstein spaces.Comment: 22 pages. Corrected equation (12
    • …
    corecore