21 research outputs found

    Consortium fine localization of X-linked Charcot-Marie-Tooth disease (CMTX1): additional support that connexin32 is the defect in CMTX1.

    No full text
    Charcot-Marie-Tooth (CMT) disease is the most common form of inherited motor and sensory neuropathy. X-linked CMT (CMTX1) has been localized to the pericentric region of the X chromosome. Recently, mutations have been defined in the connexin32 gene that cosegregate with the CMTX1 phenotype in several families. The present paper presents the results of an international consortium to fine map the gene for CMTX1 to a small segment of Xq12-13. The linkage data, together with the molecular genetic studies, support the hypothesis that connexin32 is the genetic defect in CMTX1

    Consortium fine localization of X-linked Charcot-Marie-Tooth disease (CMTX1): additional support that connexin32 is the defect in CMTX1.

    No full text
    Charcot-Marie-Tooth (CMT) disease is the most common form of inherited motor and sensory neuropathy. X-linked CMT (CMTX1) has been localized to the pericentric region of the X chromosome. Recently, mutations have been defined in the connexin32 gene that cosegregate with the CMTX1 phenotype in several families. The present paper presents the results of an international consortium to fine map the gene for CMTX1 to a small segment of Xq12-13. The linkage data, together with the molecular genetic studies, support the hypothesis that connexin32 is the genetic defect in CMTX1

    Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis

    No full text
    Erythrokeratodermia variabilis (EKV, OMIM 133200) is an autosomal dominant genodermatosis with considerable intra- and interfamilial variability. It has a disfiguring phenotype characterized by the independent occurrence of two morphologic features: transient figurate red patches and localized or generalized hyperkeratosis. Both features can be triggered by external factors such as trauma to the skin. After initial linkage to the RH locus on 1p, EKV was mapped to an interval of 2.6 cM on 1p34-p35, and a candidate gene (GJA4) encoding the gap junction protein alpha-4 (connexin 31, Cx31) was excluded by sequence analysis. Evidence in mouse suggesting that the EKV region harbours a cluster of epidermally expressed connexin genes led us to characterize the human homologues of GJB3 (encoding Cx31) and GJB5 (encoding Cx31.1). GJB3, GJB5 and GJA4 were localized to a 1.1-Mb YAC in the candidate interval. We detected heterozygous missense mutations in GJB3 in four EKV families leading to substitution of a conserved glycine by charged residues (G12R and G12D), or change of a cysteine (C86S). These mutations are predicted to interfere with normal Cx31 structure and function, possibly due to a dominant inhibitory effect. Our results implicate Cx31 in the pathogenesis of EKV, and provide evidence that intercellular communication mediated by Cx31 is crucial for epidermal differentiation and response to external factors
    corecore