85 research outputs found

    CO diffusion and desorption kinetics in CO2_2 ices

    Full text link
    Diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2_2 ice at low temperatures (T=11--23~K) using CO2_2 longitudinal optical (LO) phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick's second law and find the temperature dependent diffusion coefficients are well fit by an Arrhenius equation giving a diffusion barrier of 300 ±\pm 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2_2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2_2 ices deposited at 11-50 K by temperature-programmed desorption (TPD) and find that the desorption barrier ranges from 1240 ±\pm 90 K to 1410 ±\pm 70 K depending on the CO2_2 deposition temperature and resultant ice porosity. The measured CO-CO2_2 desorption barriers demonstrate that CO binds equally well to CO2_2 and H2_2O ices when both are compact. The CO-CO2_2 diffusion-desorption barrier ratio ranges from 0.21-0.24 dependent on the binding environment during diffusion. The diffusion-desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices

    Interstellar Comets from Post-Main Sequence Systems as Tracers of Extrasolar Oort Clouds

    Full text link
    Interstellar small bodies are unique probes into the histories of exoplanetary systems. One hypothesized class of interlopers are "Jurads," exo-comets released into the Milky Way during the post-main sequence as the thermally-pulsing asymptotic giant branch (AGB) host stars lose mass. In this study, we assess the prospects for the Legacy Survey of Space and Time (LSST) to detect a Jurad and examine whether such an interloper would be observationally distinguishable from exo-comets ejected during the (pre-)main sequence. Using analytic and numerical methods, we estimate the fraction of exo-Oort Cloud objects that are released from 1-8 solar mass stars during post-main sequence evolution. We quantify the extent to which small bodies are altered by the increased luminosity and stellar outflows during the AGB, finding that some Jurads may lack hypervolatiles and that stellar winds could deposit dust that covers the entire exo-comet surface. Next, we construct models of the interstellar small body reservoir for various size-frequency distribution slopes, characteristic sizes, and the total mass sequestered in the minor planets of exo-Oort Clouds. Even with the LSST's increased search volume compared to contemporary surveys, we find that detecting a Jurad is unlikely but not infeasible given the current understanding of (exo)planet formation.Comment: 28 pages, 13 figures; accepted to PS
    • …
    corecore