32 research outputs found
The edge-on protoplanetary disk HH 48 NE: II. Modeling ices and silicates
Stars and planetary system
Grain Surface Models and Data for Astrochemistry
AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
Molecules with ALMA at planet-forming scales (MAPS). IX. Distribution and properties of the large organic molecules HC3N, CH3CN, and c-C3H2
The precursors to larger, biologically relevant molecules are detected throughout interstellar space, but determining the presence and properties of these molecules during planet formation requires observations of protoplanetary disks at high angular resolution and sensitivity. Here, we present 0".3 observations of HC3N, CH3CN, and c-C3H2 in five protoplanetary disks observed as part of the Molecules with ALMA at Planet-forming Scales (MAPS) Large Program. We robustly detect all molecules in four of the disks (GM Aur, AS 209, HD 163296, and MWC480) with tentative detections of c-C3H2 and CH3CN in IM Lup. We observe a range of morphologies - central peaks, single or double rings - with no clear correlation in morphology between molecule or disk. Emission is generally compact and on scales comparable with the millimeter dust continuum. We perform both disk-integrated and radially resolved rotational diagram analysis to derive column densities and rotational temperatures. The latter reveals 5-10 times more column density in the inner 50-100 au of the disks when compared with the diskintegrated analysis. We demonstrate that CH3CN originates from lower relative heights in the disks when compared with HC3N, in some cases directly tracing the disk midplane. Finally, we find good agreement between the ratio of small to large nitriles in the outer disks and comets. Our results indicate that the protoplanetary disks studied here are host to significant reservoirs of large organic molecules, and that this planet- and comet-building material can be chemically similar to that in our own solar system. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Erratum: ''Molecules with ALMA at Planet-forming Scales (MAPS): a circumplanetary disk candidate in molecular-line emission in the AS 209 disk'' (2022, ApJL, 934, L20)
This is a correction for 2022 ApJL 934 L20DOI 10.3847/2041-8213/ac7fa3Stars and planetary system
Erratum: ''Molecules with ALMA at Planet-forming Scales (MAPS). III. Characteristics of radial chemical substructures'' (2021, ApJS, 257, 3)
This is a correction for 2021 ApJS 257 3DOI 10.3847/1538-4365/ac1434Stars and planetary system
Molecules with ALMA at planet-forming scales (MAPS). IV. Emission surfaces and vertical distribution of molecules
The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a unique opportunity to study the vertical distribution of gas, chemistry, and temperature in the protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. By using the asymmetry of molecular line emission relative to the disk major axis, we infer the emission height (z) above the midplane as a function of radius (r). Using this method, we measure emitting surfaces for a suite of CO isotopologues, HCN, and C2H. We find that 12CO emission traces the most elevated regions with z/r > 0.3, while emission from the less abundant 13CO and C18O probes deeper into the disk at altitudes of z/r ≲ 0.2. C2H and HCN have lower opacities and signal-to-noise ratios, making surface fitting more difficult, and could only be reliably constrained in AS 209, HD 163296, and MWC 480, with z/r ≲ 0.1, i.e., relatively close to the planet-forming midplanes. We determine peak brightness temperatures of the optically thick CO isotopologues and use these to trace 2D disk temperature structures. Several CO temperature profiles and emission surfaces show dips in temperature or vertical height, some of which are associated with gaps and rings in line and/or continuum emission. These substructures may be due to local changes in CO column density, gas surface density, or gas temperatures, and detailed thermochemical models are necessary to better constrain their origins and relate the chemical compositions of elevated disk layers with those of planet-forming material in disk midplanes. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362