3,620 research outputs found
Improved magnesia for thermal control coatings
Formation of radiation-generated color centers using single crystals of magnesium oxide is discussed. Crystal structure of magnesium oxide is described. Chemical processes used to produce magnesium oxide with desired color center kinetics are presented. Proton irradiation of magnesium oxide crystals was conducted to determine lattice defects
Study of color center formation in white powder compounds
White powder compounds of metal oxides for thermal protective coating of spacecraf
Learning Design: reflections on a snapshot of the current landscape
The mounting wealth of open and readily available information and the swift evolution of social, mobile and creative technologies warrant a re-conceptualisation of the role of educators: from providers of knowledge to designers of learning. This need is being addressed by a growing trend of research in Learning Design. Responding to this trend, the Art and Science of Learning Design workshop brought together leading voices in the field and provided a forum for discussing its key issues. It focused on three thematic axes: practices and methods, tools and resources, and theoretical frameworks. This paper reviews some definitions of Learning Design and then summarises the main contributions to the workshop. Drawing upon these, we identify three key challenges for Learning Design that suggest directions for future research
Electric circuit networks equivalent to chaotic quantum billiards
We formulate two types of electric RLC resonance network equivalent to
quantum billiards. In the network of inductors grounded by capacitors squared
resonant frequencies are eigenvalues of the quantum billiard. In the network of
capacitors grounded by inductors squared resonant frequencies are given by
inverse eigen values of the billiard. In both cases local voltages play role of
the wave function of the quantum billiard. However as different from quantum
billiards there is a heat power because of resistance of the inductors. In the
equivalent chaotic billiards we derive the distribution of the heat power which
well describes numerical statistics.Comment: 9 pages, 7 figure
Recommended from our members
Challenges in stem cell-derived islet replacement therapy can be overcome
In this Commentary, we echo the conclusions of a recent review titled “ The promise of stem cell-derived islet replacement therapy,” which highlighted recent advances in producing glucose responsive “islets” from stem cells and the benefits of their use in islet transplant therapy in type 1 diabetes (T1D). The review also outlined the status of clinical islet transplantation and the challenges that have prevented it from reaching its full therapeutic promise. We agree with the conclusions of the review and suggest that the identified challenges may be overcome by using the eye anterior chamber as an islet transplant site. We anticipate that the combination of stem cell-derived islets and intraocular transplant could help this promising T1D therapy reach full fruition
Testing a goal-driven account of involuntary attentional capture by threat
Attention has long been characterised within prominent models as reflecting a competition between goal-driven and stimulus-driven processes. It remains unclear, however, how involuntary attentional capture by affective stimuli, such as threat-laden content, fits into such models. While such effects were traditionally held to reflect stimulus-driven processes, recent research has increasingly implicated a critical role of goal-driven processes. Here we test an alternative goal-driven account of involuntary attentional capture by threat, using an experimental manipulation of goal-driven attention. To this end we combined the classic ‘contingent capture’ and ‘emotion-induced blink’ (EIB) paradigms in an RSVP task with both positive or threatening target search goals. Across six experiments, positive and threat distractors were presented in peripheral, parafoveal, and central locations. Across all distractor locations, we found that involuntary attentional capture by irrelevant threatening distractors could be induced via the adoption of a search goal for a threatening category; adopting a goal for a positive category conversely led to capture only by positive stimuli. Our findings provide direct experimental evidence for a causal role of voluntary goals in involuntary capture by irrelevant threat stimuli, and hence demonstrate the plausibility of a top-down account of this phenomenon. We discuss the implications of these findings in relation to current cognitive models of attention and clinical disorders
Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure
Measurements of thermal activation are made in a superconducting, niobium
Persistent-Current (PC) qubit structure, which has two stable classical states
of equal and opposite circulating current. The magnetization signal is read out
by ramping the bias current of a DC SQUID. This ramping causes time-ordered
measurements of the two states, where measurement of one state occurs before
the other. This time-ordering results in an effective measurement time, which
can be used to probe the thermal activation rate between the two states.
Fitting the magnetization signal as a function of temperature and ramp time
allows one to estimate a quality factor of 10^6 for our devices, a value
favorable for the observation of long quantum coherence times at lower
temperatures.Comment: 14 pages, 4 figure
Gamow Shell Model Description of Neutron-Rich Nuclei
This work presents the first continuum shell-model study of weakly bound
neutron-rich nuclei involving multiconfiguration mixing. For the
single-particle basis, the complex-energy Berggren ensemble representing the
bound single-particle states, narrow resonances, and the non-resonant continuum
background is taken. Our shell-model Hamiltonian consists of a one-body finite
potential and a zero-range residual two-body interaction. The systems with two
valence neutrons are considered. The Gamow shell model, which is a
straightforward extension of the traditional shell model, is shown to be an
excellent tool for the microscopic description of weakly bound systems. It is
demonstrated that the residual interaction coupling to the particle continuum
is important; in some cases, it can give rise to the binding of a nucleus.Comment: 4 pages, More realistic s.p. energies used than in the precedent
versio
- …