3,139 research outputs found

    Electric circuit networks equivalent to chaotic quantum billiards

    Full text link
    We formulate two types of electric RLC resonance network equivalent to quantum billiards. In the network of inductors grounded by capacitors squared resonant frequencies are eigenvalues of the quantum billiard. In the network of capacitors grounded by inductors squared resonant frequencies are given by inverse eigen values of the billiard. In both cases local voltages play role of the wave function of the quantum billiard. However as different from quantum billiards there is a heat power because of resistance of the inductors. In the equivalent chaotic billiards we derive the distribution of the heat power which well describes numerical statistics.Comment: 9 pages, 7 figure

    Non-Simplified SUSY: Stau-Coannihilation at LHC and ILC

    Full text link
    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small stau_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states.Comment: 42 pages, 18 figures, 12 table

    Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure

    Full text link
    Measurements of thermal activation are made in a superconducting, niobium Persistent-Current (PC) qubit structure, which has two stable classical states of equal and opposite circulating current. The magnetization signal is read out by ramping the bias current of a DC SQUID. This ramping causes time-ordered measurements of the two states, where measurement of one state occurs before the other. This time-ordering results in an effective measurement time, which can be used to probe the thermal activation rate between the two states. Fitting the magnetization signal as a function of temperature and ramp time allows one to estimate a quality factor of 10^6 for our devices, a value favorable for the observation of long quantum coherence times at lower temperatures.Comment: 14 pages, 4 figure

    Superconducting microfabricated ion traps

    Full text link
    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.Comment: 3 pages, 2 figure

    Temperature dependent BCS equations with continuum coupling

    Get PDF
    The temperature dependent BCS equations are modified in order to include the contribution of the continuum single particle states. The influence of the continuum upon the critical temperature corresponding to the phase transition from a superfluid to a normal state and upon the behaviour of the excitation energy and of the entropy is discussed.Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Electron focusing, mode spectroscopy and mass enhancement in small GaAs/AlGaAs rings

    Full text link
    A new electron focusing effect has been discovered in small single and coupled GaAs/AlGaAs rings. The focusing in the single ring is attributed solely to internal orbits. The focusing effect allows the ring to be used as a small mass spectrometer. The focusing causes peaks in the magnetoresistance at low fields, and the peak positions were used to study the dispersion relation of the one-dimensional magnetoelectric subbands. The electron effective mass increases with the applied magnetic field by a factor of 5050, at a magnetic field of 0.5T0.5T. This is the first time this increase has been measured directly. General agreement obtains between the experiment and the subband calculations for straight channels.Comment: 13 pages figures are available by reques

    Geometry-dependent critical currents in superconducting nanocircuits

    Full text link
    In this paper we calculate the critical currents in thin superconducting strips with sharp right-angle turns, 180-degree turnarounds, and more complicated geometries, where all the line widths are much smaller than the Pearl length Λ=2λ2/d\Lambda = 2 \lambda^2/d. We define the critical current as the current that reduces the Gibbs free-energy barrier to zero. We show that current crowding, which occurs whenever the current rounds a sharp turn, tends to reduce the critical current, but we also show that when the radius of curvature is less than the coherence length this effect is partially compensated by a radius-of-curvature effect. We propose several patterns with rounded corners to avoid critical-current reduction due to current crowding. These results are relevant to superconducting nanowire single-photon detectors, where they suggest a means of improving the bias conditions and reducing dark counts. These results also have relevance to normal-metal nanocircuits, as these patterns can reduce the electrical resistance, electromigration, and hot spots caused by nonuniform heating.Comment: 29 pages, 24 figure

    Channel Interference in a Quasi Ballistic Aharonov-Bohm Experiment

    Full text link
    New experiments are presented on the transmission of electron waves through a 2DEG (2 dimensional electron gas) ring with a gate on top of one of the branches. Magnetoconductance oscillations are observed, and the phase of the Aharanov-Bohm signal alternates between 0 and pi as the gate voltage is scanned. A Fourier transform of the data reveals a dominant period in the voltage which corresponds to the energy spacing between successive transverse modes.A theoretical model including random phase shifts between successive modes reproduces the essential features of the experiment.Comment: 4 pages, 6 Postscript figures, TEX, submitted to Physical Review Letter

    Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors

    Get PDF
    Superconducting nanowires are widely used as sensitive single photon detectors with wide spectral coverage and high timing resolution. We describe a demonstration of an array of dc-biased superconducting nanowire single photon detectors read out with a microwave multiplexing circuit. In this design, each individual nanowire is part of a resonant LC circuit where the inductance is dominated by the kinetic inductance of the nanowire. The circuit also contains two parallel plate capacitors, one of them is in parallel with the inductor and the other is coupled to a microwave transmission line that carries the signals to a cryogenic low-noise amplifier. All of the nanowires are connected via resistors to a single dc bias line that enables the nanowires to be current biased close to their critical current. When a photon hits a nanowire, it creates a normal hotspot that produces a voltage pulse across the LC circuit. This pulse rings down at the resonant frequency of the LC circuit over a time period that is fixed by the quality factor. We present measurements of an array of these devices and an evaluation of their performance in terms of frequency and time response
    corecore