2 research outputs found

    Dynamic critical phenomena from spectral functions on the lattice

    Full text link
    We investigate spectral functions in the vicinity of the critical temperature of a second-order phase transition. Since critical phenomena in quantum field theories are governed by classical dynamics, universal properties can be computed using real-time lattice simulations. For the example of a relativistic single-component scalar field theory in 2+1 dimensions, we compute the spectral function described by universal scaling functions and extract the dynamic critical exponent z. Together with exactly known static properties of this theory, we obtain a verification from first principles that the relativistic theory is well described by the dynamic universality class of relaxational models with conserved density (Model C).Comment: 18 pages, 6 figures, NPB version, minor change

    EMMI Rapid Reaction Task Force on "Thermalization in Non-abelian Plasmas"

    Full text link
    Recently, different proposals have been put forward on how thermalization proceeds in heavy-ion collisions in the idealized limit of very large nuclei at sufficiently high energy. Important aspects of the parametric estimates at weak coupling may be tested using well-established classical-statistical lattice simulations of the far-from-equilibrium gluon dynamics. This has to be confronted with strong coupling scenarios in related theories based on gauge-string dualities. Furthermore, closely related questions about far-from-equilibrium dynamics arise in early-universe cosmology and in non-relativistic systems of ultracold atoms. These were central topics of the EMMI Rapid Reaction Task Force meeting held on December 12-14, 2011, at the University of Heidelberg, which we report on.Comment: 13 pages, summary of the EMMI Rapid Reaction Task Force on "Thermalization in Non-abelian Plasmas", December 12-14, 2011, University of Heidelberg, German
    corecore