82 research outputs found
A characteristic particle method for traffic flow simulations on highway networks
A characteristic particle method for the simulation of first order
macroscopic traffic models on road networks is presented. The approach is based
on the method "particleclaw", which solves scalar one dimensional hyperbolic
conservations laws exactly, except for a small error right around shocks. The
method is generalized to nonlinear network flows, where particle approximations
on the edges are suitably coupled together at the network nodes. It is
demonstrated in numerical examples that the resulting particle method can
approximate traffic jams accurately, while only devoting a few degrees of
freedom to each edge of the network.Comment: 15 pages, 5 figures. Accepted to the proceedings of the Sixth
International Workshop Meshfree Methods for PDE 201
Seesaw mechanism, baryon asymmetry and neutrinoless double beta decay
A simplified but very instructive analysis of the seesaw mechanism is here
performed. Assuming a nearly diagonal Dirac neutrino mass matrix, we study the
forms of the Majorana mass matrix of right-handed neutrinos, which reproduce
the effective mass matrix of left-handed neutrinos. As a further step, the
important effect of a non diagonal Dirac neutrino mass matrix is explored. The
corresponding implications for the baryogenesis via leptogenesis and for the
neutrinoless double beta decay are reviewed. We propose two distinct models
where the baryon asymmetry is enhanced.Comment: 21 pages, RevTex. Revise
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance
We have made a first measurement of the lepton momentum spectrum in a sample
of events enriched in neutral B's through a partial reconstruction of B0 -->
D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the
Upsilon(4S) resonance by the CLEO II detector, is compared directly to the
inclusive lepton spectrum from all Upsilon(4S) events in the same data set.
These two spectra are consistent with having the same shape above 1.5 GeV/c.
From the two spectra and two other CLEO measurements, we obtain the B0 and B+
semileptonic branching fractions, b0 and b+, their ratio, and the production
ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950
(+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57
+- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes,
tau+/tau0.Comment: 14 page, postscript file also available at
http://w4.lns.cornell.edu/public/CLN
Radiative Decay Modes of the Meson
Using data recorded by the CLEO-II detector at CESR we have searched for four
radiative decay modes of the meson: ,
, , and . We
obtain 90% CL upper limits on the branching ratios of these modes of , , and
respectively.Comment: 15 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Measurement of the Mass Splittings between the States
We present new measurements of photon energies and branching fractions for
the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the
chi_b states are determined from the measured radiative photon energies. The
ratio of mass splittings between the chi_b substates,
r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information
on the nature of the bbbar confining potential. We find
r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world
average, but more consistent with the theoretical expectation that r(1P)<r(2P);
i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than
for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Cold Plus Hot Dark Matter Cosmology in the Light of Solar and Atmospheric Neutrino Oscillations
We explore the implications of possible neutrino oscillations, as indicated
by the solar and atmospheric neutrino experiments, for the cold plus hot dark
matter scenario of large scale structure formation. We find that there are
essentially three distinct schemes that can accommodate the oscillation data
and which also allow for dark matter neutrinos. These include (i) three nearly
degenerate (in mass) neutrinos, (ii) non-degenerate masses with in
the eV range, and (iii) nearly degenerate pair (in the eV
range), with the additional possibility that the electron neutrino is
cosmologically significant. The last two schemes invoke a `sterile' neutrino
which is light (< or ~ eV). We discuss the implications of these schemes for
and oscillation, and find
that scheme (ii) in particular, predicts them to be in the observable range. As
far as structure formation is concerned, we compare the one neutrino flavor
case with a variety of other possibilities, including two and three degenerate
neutrino flavors. We show, both analytically and numerically, the effects of
these neutrino mass scenarios on the amplitude of cosmological density
fluctuations. With a Hubble constant of 50 km s Mpc, a spectral
index of unity, and , the two and three flavor
scenarios fit the observational data marginally better than the single flavor
scheme. However, taking account of the uncertainties in these parameters, we
show that it is premature to pick a clear winner.Comment: 1 LaTEX file plus 1 uuencoded Z-compressed tar file with 3 postscript
figure
Pathogen-sugar interactions revealed by universal saturation transfer analysis
Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis
Studies of the Cabbibo-Suppressed Decays and
Using 4.8 fb of data taken with the CLEO II detector, the branching
fraction for the Cabibbo-suppressed decay measured
relative to the Cabibbo favored decay is found to be
. Using and from unitarity
constraints, we determine We
also present a 90% confidence level upper limit for the branching ratio of the
decay relative to that for of
1.5.Comment: 10 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Searches for lepton-flavour-violating decays of the Higgs boson in TeV collisions with the ATLAS detector
This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and
H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample
of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated
luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard
Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio
- …