597 research outputs found
Intelligent Recognition of Acoustic and Vibration Threats for Security Breach Detection, Close Proximity Danger Identification, and Perimeter Protection
This article appeared in Homeland Security Affairs (March 2011), Supplement no.3The protection of perimeters in national, agricultural, airport, prison, and military sites, and residential areas against dangerous approaching human and vehicles when using human agents to provide security is expensive or unsafe. Because of this, acoustic/vibration signature identification of approaching human and vehicles threats has attracted increased attention. This paper addresses the development and deployment of three types of acoustic and vibration based smart sensors to identify and report sequential approaching threats prior to the intrusion. More specifically, we have developed: a) acoustic based long range sensor with which vehicles' engine sound and type can be identified, b) vibration based seismic analyzer which discriminates between human footsteps and other seismic events such as those caused by animals, and c) fence breaching vibration sensor which can detect intentional disturbances on the fence and discriminate between climb, kick, rattle, and lean. All of these sensors were designed with several issues in mind, namely, optimized low power usage, a low number of false positives, small size, secure radio communication, and military specifications. The developed vibration based system was installed in an airport with unprotected shore lines in the vicinity of taxi-and run-ways. The system reported an average of less than two false positives per week and zero false negative for the duration of forty-five days. Six fence sensors were installed on the terminal area and end-of runway chain-link fences where there was possibility of intentional fence climbing. The fence sensors reported no false positives for the duration of forty-five days which included several days of seasonal storms.Approved for public release; distribution is unlimited
Prefrontal cortical microcircuits bind perception to executive control
During the perception-to-action cycle, our cerebral cortex mediates the interactions between the environment and the perceptual-executive systems of the brain. At the top of the executive hierarchy, prefrontal cortical microcircuits are assumed to bind perceptual and executive control information to guide goal-driven behavior. Here, we tested this hypothesis by comparing simultaneously recorded neuron firing in prefrontal cortical layers and the caudate-putamen of rhesus monkeys, trained in a spatial-versus-object, rule-based match-to-sample task. We found that during the perception and executive selection phases, cell firing in the localized prefrontal layers and caudate-putamen region exhibited similar location preferences on spatial-trials, but less on object- trials. Then, we facilitated the perceptual-executive circuit by stimulating the prefrontal infra-granular-layers with patterns previously derived from supra-granular-layers, and produced stimulation-induced spatial preference in percent correct performance on spatial trials, similar to neural tuning. These results show that inter-laminar prefrontal microcircuits play causal roles to the perception-to-action cycle
Distributed Encoding of Spatial and Object Categories in Primate Hippocampal Microcircuits
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics
Initial Helioseismic Observations by Hinode/SOT
Results from initial helioseismic observations by Solar Optical Telescope
onboard Hinode are reported. It has been demonstrated that intensity
oscillation data from Broadband Filter Imager can be used for various
helioseismic analyses. The k-omega power spectra, as well as corresponding
time-distance cross-correlation function that promises high-resolution
time-distance analysis below 6-Mm travelling distance, were obtained for G-band
and CaII-H data. Subsurface supergranular patterns have been observed from our
first time-distance analysis. The results show that the solar oscillation
spectrum is extended to much higher frequencies and wavenumbers, and the
time-distance diagram is extended to much shorter travel distances and times
than they were observed before, thus revealing great potential for
high-resolution helioseismic observations from Hinode.Comment: 6 pages, accepted for publication in PAS
Admittance Method for Estimating Local Field Potentials Generated in a Multi-Scale Neuron Model of the Hippocampus
Significant progress has been made toward model-based prediction of neral tissue activation in response to extracellular electrical stimulation, but challenges remain in the accurate and efficient estimation of distributed local field potentials (LFP). Analytical methods of estimating electric fields are a first-order approximation that may be suitable for model validation, but they are computationally expensive and cannot accurately capture boundary conditions in heterogeneous tissue. While there are many appropriate numerical methods of solving electric fields in neural tissue models, there isn\u27t an established standard for mesh geometry nor a well-known rule for handling any mismatch in spatial resolution. Moreover, the challenge of misalignment between current sources and mesh nodes in a finite-element or resistor-network method volume conduction model needs to be further investigated. Therefore, using a previously published and validated multi-scale model of the hippocampus, the authors have formulated an algorithm for LFP estimation, and by extension, bidirectional communication between discretized and numerically solved volume conduction models and biologically detailed neural circuit models constructed in NEURON. Development of this algorithm required that we assess meshes of (i) unstructured tetrahedral and grid-based hexahedral geometries as well as (ii) differing approaches for managing the spatial misalignment of current sources and mesh nodes. The resulting algorithm is validated through the comparison of Admittance Method predicted evoked potentials with analytically estimated LFPs. Establishing this method is a critical step toward closed-loop integration of volume conductor and NEURON models that could lead to substantial improvement of the predictive power of multi-scale stimulation models of cortical tissue. These models may be used to deepen our understanding of hippocampal pathologies and the identification of efficacious electroceutical treatments
Emergence of a Helical Flux Rope Under an Active Region Prominence
Continuous observations were obtained of active region 10953 with the Solar
Optical Telescope (SOT) on board the \emph{Hinode} satellite during 2007 April
28 to May 9. A prominence was located over the polarity inversion line (PIL) in
the south-east of the main sunspot. These observations provided us with a time
series of vector magnetic fields on the photosphere under the prominence. We
found four features: (1) The abutting opposite-polarity regions on the two
sides along the PIL first grew laterally in size and then narrowed. (2) These
abutting regions contained vertically-weak, but horizontally-strong magnetic
fields. (3) The orientations of the horizontal magnetic fields along the PIL on
the photosphere gradually changed with time from a normal-polarity
configuration to a inverse-polarity one. (4) The horizontal-magnetic field
region was blueshifted. These indicate that helical flux rope was emerging from
below the photosphere into the corona along the PIL under the pre-existing
prominence. We suggest that this supply of a helical magnetic flux into the
corona is associated with evolution and maintenance of active-region
prominences.Comment: 10 pages, 2 figures, accepted for publication in ApJ Letter
- …