2,267 research outputs found
Real-time edge tracking using a tactile sensor
Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented
Manufacture of Gowdy spacetimes with spikes
In numerical studies of Gowdy spacetimes evidence has been found for the
development of localized features (spikes) involving large gradients near the
singularity. The rigorous mathematical results available up to now did not
cover this kind of situation. In this work we show the existence of large
classes of Gowdy spacetimes exhibiting features of the kind discovered
numerically. These spacetimes are constructed by applying certain
transformations to previously known spacetimes without spikes. It is possible
to control the behaviour of the Kretschmann scalar near the singularity in
detail. This curvature invariant is found to blow up in a way which is
non-uniform near the spike in some cases. When this happens it demonstrates
that the spike is a geometrically invariant feature and not an artefact of the
choice of variables used to parametrize the metric. We also identify another
class of spikes which are artefacts. The spikes produced by our method are
compared with the results of numerical and heuristic analyses of the same
situation.Comment: 25 page
Fuchsian methods and spacetime singularities
Fuchsian methods and their applications to the study of the structure of
spacetime singularities are surveyed. The existence question for spacetimes
with compact Cauchy horizons is discussed. After some basic facts concerning
Fuchsian equations have been recalled, various ways in which these equations
have been applied in general relativity are described. Possible future
applications are indicated
Supersymmetry and Lorentz Violation
Supersymmetric field theories can be constructed that violate Lorentz and CPT
symmetry. We illustrate this with some simple examples related to the original
Wess-Zumino model.Comment: 4 page
A global foliation of Einstein-Euler spacetimes with Gowdy-symmetry on T3
We investigate the initial value problem for the Einstein-Euler equations of
general relativity under the assumption of Gowdy symmetry on T3, and we
construct matter spacetimes with low regularity. These spacetimes admit, both,
impulsive gravitational waves in the metric (for instance, Dirac mass curvature
singularities propagating at light speed) and shock waves in the fluid (i.e.,
discontinuities propagating at about the sound speed). Given an initial data
set, we establish the existence of a future development and we provide a global
foliation in terms of a globally and geometrically defined time-function,
closely related to the area of the orbits of the symmetry group. The main
difficulty lies in the low regularity assumed on the initial data set which
requires a distributional formulation of the Einstein-Euler equations.Comment: 24 page
Initial Helioseismic Observations by Hinode/SOT
Results from initial helioseismic observations by Solar Optical Telescope
onboard Hinode are reported. It has been demonstrated that intensity
oscillation data from Broadband Filter Imager can be used for various
helioseismic analyses. The k-omega power spectra, as well as corresponding
time-distance cross-correlation function that promises high-resolution
time-distance analysis below 6-Mm travelling distance, were obtained for G-band
and CaII-H data. Subsurface supergranular patterns have been observed from our
first time-distance analysis. The results show that the solar oscillation
spectrum is extended to much higher frequencies and wavenumbers, and the
time-distance diagram is extended to much shorter travel distances and times
than they were observed before, thus revealing great potential for
high-resolution helioseismic observations from Hinode.Comment: 6 pages, accepted for publication in PAS
Global dynamics of the mixmaster model
The asymptotic behaviour of vacuum Bianchi models of class A near the initial
singularity is studied, in an effort to confirm the standard picture arising
from heuristic and numerical approaches by mathematical proofs. It is shown
that for solutions of types other than VIII and IX the singularity is velocity
dominated and that the Kretschmann scalar is unbounded there, except in the
explicitly known cases where the spacetime can be smoothly extended through a
Cauchy horizon. For types VIII and IX it is shown that there are at most two
possibilities for the evolution. When the first possibility is realized, and if
the spacetime is not one of the explicitly known solutions which can be
smoothly extended through a Cauchy horizon, then there are infinitely many
oscillations near the singularity and the Kretschmann scalar is unbounded
there. The second possibility remains mysterious and it is left open whether it
ever occurs. It is also shown that any finite sequence of distinct points
generated by iterating the Belinskii-Khalatnikov-Lifschitz mapping can be
realized approximately by a solution of the vacuum Einstein equations of
Bianchi type IX.Comment: 16 page
An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
The solar-to-hydrogen (STH) efficiency limits, along with the maximum efficiency values and the corresponding optimal band gap combinations, have been evaluated for various combinations of light absorbers arranged in a tandem configuration in realistic, operational water-splitting prototypes. To perform the evaluation, a current–voltage model was employed, with the light absorbers, electrocatalysts, solution electrolyte, and membranes coupled in series, and with the directions of optical absorption, carrier transport, electron transfer and ionic transport in parallel. The current density vs. voltage characteristics of the light absorbers were determined by detailed-balance calculations that accounted for the Shockley–Queisser limit on the photovoltage of each absorber. The maximum STH efficiency for an integrated photoelectrochemical system was found to be ~31.1% at 1 Sun (=1 kW m⁻², air mass 1.5), fundamentally limited by a matching photocurrent density of 25.3 mA cm⁻² produced by the light absorbers. Choices of electrocatalysts, as well as the fill factors of the light absorbers and the Ohmic resistance of the solution electrolyte also play key roles in determining the maximum STH efficiency and the corresponding optimal tandem band gap combination. Pairing 1.6–1.8 eV band gap semiconductors with Si in a tandem structure produces promising light absorbers for water splitting, with theoretical STH efficiency limits of >25%
- …