29,227 research outputs found

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Analysis of a Model for Ship Maneuvering

    Get PDF
    We analyze numerically and theoretically steady states and bifurcations in a model for ship maneuvering provided by MARIN, and in a simplified model that combines rudder and propeller into an abstract ‘thruster’. Steady states in the model correspond to circular motion of the ship and we compute the corresponding radii. We non-dimensionalize the models and thereby remove a number of parameters, so that, due to a scaling symmetry, only the rudder (or thruster) angle remains as a free parameter. Using ‘degree theory’, we show that a slight modification of the model pos- sesses at least one steady state for each angle and find certain constraints on the possible steady state configuration. We show that straight motion is unstable for the Hamburg test case and use numerical continuation and bifurcation software to compute a number of curves of states together with their stability, and the corresponding radii of the ship motion. In particular, straight forward motion can be stabilised by increasing the rudder size parameter, and the smallest possible radius is ∼ 119 m. These analyses illustrate methods and tools from dynamical systems theory that can be used to analyse a model without simulation. Compared with simulations, the numerical bifurcation analysis is much less time consuming. We have implemented the model in MATLAB and the bifurcation software AUTO

    Metastable π Junction between an s±-Wave and an s-Wave Superconductor

    Get PDF
    We examine a contact between a superconductor whose order parameter changes sign across the Brillioun zone, and an ordinary, uniform-sign superconductor. Within a Ginzburg-Landau-type model, we find that if the barrier between the two superconductors is not too high, the frustration of the Josephson coupling between different portions of the Fermi surface across the contact can lead to surprising consequences. These include time-reversal symmetry breaking at the interface and unusual energy-phase relations with multiple local minima. We propose this mechanism as a possible explanation for the half-integer flux quantum transitions in composite niobium-iron pnictide superconducting loops, which were discovered in recent experiments [C.-T. Chen et al., Nature Phys. 6, 260 (2010).]

    Graph Convolutional Matrix Completion

    Get PDF
    We consider matrix completion for recommender systems from the point of view of link prediction on graphs. Interaction data such as movie ratings can be represented by a bipartite user-item graph with labeled edges denoting observed ratings. Building on recent progress in deep learning on graph-structured data, we propose a graph auto-encoder framework based on differentiable message passing on the bipartite interaction graph. Our model shows competitive performance on standard collaborative filtering benchmarks. In settings where complimentary feature information or structured data such as a social network is available, our framework outperforms recent state-of-the-art methods.Comment: 9 pages, 3 figures, updated with additional experimental evaluatio

    On the Bragg Diffraction Spectra of a Meyer Set

    Full text link
    Meyer sets have a relatively dense set of Bragg peaks and for this reason they may be considered as basic mathematical examples of (aperiodic) crystals. In this paper we investigate the pure point part of the diffraction of Meyer sets in more detail. The results are of two kinds. First we show that given a Meyer set and any intensity a less than the maximum intensity of its Bragg peaks, the set of Bragg peaks whose intensity exceeds a is itself a Meyer set (in the Fourier space). Second we show that if a Meyer set is modified by addition and removal of points in such a way that its density is not altered too much (the allowable amount being given explicitly as a proportion of the original density) then the newly obtained set still has a relatively dense set of Bragg peaks.Comment: 32 page

    The Approximating Hamiltonian Method for the Imperfect Boson Gas

    Full text link
    The pressure for the Imperfect (Mean Field) Boson gas can be derived in several ways. The aim of the present note is to provide a new method based on the Approximating Hamiltonian argument which is extremely simple and very general.Comment: 7 page

    Multi-Overlap Simulations for Transitions between Reference Configurations

    Full text link
    We introduce a new procedure to construct weight factors, which flatten the probability density of the overlap with respect to some pre-defined reference configuration. This allows one to overcome free energy barriers in the overlap variable. Subsequently, we generalize the approach to deal with the overlaps with respect to two reference configurations so that transitions between them are induced. We illustrate our approach by simulations of the brainpeptide Met-enkephalin with the ECEPP/2 energy function using the global-energy-minimum and the second lowest-energy states as reference configurations. The free energy is obtained as functions of the dihedral and the root-mean-square distances from these two configurations. The latter allows one to identify the transition state and to estimate its associated free energy barrier.Comment: 12 pages, (RevTeX), 14 figures, Phys. Rev. E, submitte
    • …
    corecore