30,657 research outputs found
Biased Metropolis-Heat-Bath Algorithm for Fundamental-Adjoint SU(2) Lattice Gauge Theory
For SU(2) lattice gauge theory with the fundamental-adjoint action an
efficient heat-bath algorithm is not known so that one had to rely on
Metropolis simulations supplemented by overrelaxation. Implementing a novel
biased Metropolis-heat-bath algorithm for this model, we find improvement
factors in the range 1.45 to 2.06 over conventionally optimized Metropolis
simulations. If one optimizes further with respect to additional overrelaxation
sweeps, the improvement factors are found in the range 1.3 to 1.8.Comment: 4 pages, 2 figures; minor changes and one reference added; accepted
for publication in PR
Periodic-Orbit Bifurcation and Shell Structure in Reflection-Asymmetric Deformed Cavity
Shell structure of the single-particle spectrum for reflection-asymmetric
deformed cavity is investigated. Remarkable shell structure emerges for certain
combinations of quadrupole and octupole deformations. Semiclassical
periodic-orbit analysis indicates that bifurcation of equatorial orbits plays
an important role in the formation of this new shell structure.Comment: 5 pages, latex including 5 postscript figures, submitted to Physics
Letters
Density of states and Fisher's zeros in compact U(1) pure gauge theory
We present high-accuracy calculations of the density of states using
multicanonical methods for lattice gauge theory with a compact gauge group U(1)
on 4^4, 6^4 and 8^4 lattices. We show that the results are consistent with weak
and strong coupling expansions. We present methods based on Chebyshev
interpolations and Cauchy theorem to find the (Fisher's) zeros of the partition
function in the complex beta=1/g^2 plane. The results are consistent with
reweighting methods whenever the latter are accurate. We discuss the volume
dependence of the imaginary part of the Fisher's zeros, the width and depth of
the plaquette distribution at the value of beta where the two peaks have equal
height. We discuss strategies to discriminate between first and second order
transitions and explore them with data at larger volume but lower statistics.
Higher statistics and even larger lattices are necessary to draw strong
conclusions regarding the order of the transition.Comment: 14 pages, 16 figure
On the energy momentum dispersion in the lattice regularization
For a free scalar boson field and for U(1) gauge theory finite volume
(infrared) and other corrections to the energy-momentum dispersion in the
lattice regularization are investigated calculating energy eigenstates from the
fall off behavior of two-point correlation functions. For small lattices the
squared dispersion energy defined by is in both cases
negative ( is the Euclidean space-time dimension and the
energy of momentum eigenstates). Observation of has
been an accepted method to demonstrate the existence of a massless photon
() in 4D lattice gauge theory, which we supplement here by a study of
its finite size corrections. A surprise from the lattice regularization of the
free field is that infrared corrections do {\it not} eliminate a difference
between the groundstate energy and the mass parameter of the free
scalar lattice action. Instead, the relation is
derived independently of the spatial lattice size.Comment: 9 pages, 2 figures. Parts of the paper have been rewritten and
expanded to clarify the result
Multicanonical Study of the 3D Ising Spin Glass
We simulated the Edwards-Anderson Ising spin glass model in three dimensions
via the recently proposed multicanonical ensemble. Physical quantities such as
energy density, specific heat and entropy are evaluated at all temperatures. We
studied their finite size scaling, as well as the zero temperature limit to
explore the ground state properties.Comment: FSU-SCRI-92-121; 7 pages; sorry, no figures include
Defect-induced spin-glass magnetism in incommensurate spin-gap magnets
We study magnetic order induced by non-magnetic impurities in quantum
paramagnets with incommensurate host spin correlations. In contrast to the
well-studied commensurate case where the defect-induced magnetism is spatially
disordered but non-frustrated, the present problem combines strong disorder
with frustration and, consequently, leads to spin-glass order. We discuss the
crossover from strong randomness in the dilute limit to more conventional glass
behavior at larger doping, and numerically characterize the robust short-range
order inherent to the spin-glass phase. We relate our findings to magnetic
order in both BiCu2PO6 and YBa2Cu3O6.6 induced by Zn substitution.Comment: 6 pages, 5 figs, (v2) real-space RG results added; discussion
extended, (v3) final version as publishe
Evaluation of Labeling Strategies for Rotating Maps
We consider the following problem of labeling points in a dynamic map that
allows rotation. We are given a set of points in the plane labeled by a set of
mutually disjoint labels, where each label is an axis-aligned rectangle
attached with one corner to its respective point. We require that each label
remains horizontally aligned during the map rotation and our goal is to find a
set of mutually non-overlapping active labels for every rotation angle so that the number of active labels over a full map rotation of
2 is maximized. We discuss and experimentally evaluate several labeling
models that define additional consistency constraints on label activities in
order to reduce flickering effects during monotone map rotation. We introduce
three heuristic algorithms and compare them experimentally to an existing
approximation algorithm and exact solutions obtained from an integer linear
program. Our results show that on the one hand low flickering can be achieved
at the expense of only a small reduction in the objective value, and that on
the other hand the proposed heuristics achieve a high labeling quality
significantly faster than the other methods.Comment: 16 pages, extended version of a SEA 2014 pape
Overlap Distribution of the Three-Dimensional Ising Model
We study the Parisi overlap probability density P_L(q) for the
three-dimensional Ising ferromagnet by means of Monte Carlo (MC) simulations.
At the critical point P_L(q) is peaked around q=0 in contrast with the double
peaked magnetic probability density. We give particular attention to the tails
of the overlap distribution at the critical point, which we control over up to
500 orders of magnitude by using the multi-overlap MC algorithm. Below the
critical temperature interface tension estimates from the overlap probability
density are given and their approach to the infinite volume limit appears to be
smoother than for estimates from the magnetization.Comment: 7 pages, RevTex, 9 Postscript figure
Frequency Dependent Viscosity Near the Critical Point: The Scale to Two Loop Order
The recent accurate measurements of Berg, Moldover and Zimmerli of the
viscoelastic effect near the critical point of xenon has shown that the scale
factor involved in the frequency scaling is about twice the scale factor
obtained theoretically. We show that this discrepancy is a consequence of using
first order perturbation theory. Including two loop contribution goes a long
way towards removing the discrepancy.Comment: No of pages:7,Submitted to PR-E(Rapid Communication),No of EPS
files:
- …