4,723 research outputs found

    Efficient Correlated Topic Modeling with Topic Embedding

    Full text link
    Correlated topic modeling has been limited to small model and problem sizes due to their high computational cost and poor scaling. In this paper, we propose a new model which learns compact topic embeddings and captures topic correlations through the closeness between the topic vectors. Our method enables efficient inference in the low-dimensional embedding space, reducing previous cubic or quadratic time complexity to linear w.r.t the topic size. We further speedup variational inference with a fast sampler to exploit sparsity of topic occurrence. Extensive experiments show that our approach is capable of handling model and data scales which are several orders of magnitude larger than existing correlation results, without sacrificing modeling quality by providing competitive or superior performance in document classification and retrieval.Comment: KDD 2017 oral. The first two authors contributed equall

    Transient analysis of proton electrolyte membrane fuel cells (PEMFC) at start-up and failure

    Get PDF
    A two-dimensional, transient, single-phase computational model, incorporating water transport in the membrane and the flow and transport of species in porous gas diffusion electrodes is developed to evaluate the transient performance of a PEMFC with interdigitated gas distributors. The co-flow and counter-flow of the anode and cathode reactants are discussed to address their effects on PEMFC performance and transients. The important role of water transport in the membrane on the transients is demonstrated. The membrane’s water intake or outtake determines the duration of the transients. The effect of the operating conditions on steady state and transient performances is outlined. Overshoots and undershoots are observed in the average current density, due to a step change in the cell voltage and the cathode pressure under start-up conditions. Simulation results are used to address the role of auxiliary components in the failure modes of the PEMFC

    Learning-based Ensemble Average Propagator Estimation

    Full text link
    By capturing the anisotropic water diffusion in tissue, diffusion magnetic resonance imaging (dMRI) provides a unique tool for noninvasively probing the tissue microstructure and orientation in the human brain. The diffusion profile can be described by the ensemble average propagator (EAP), which is inferred from observed diffusion signals. However, accurate EAP estimation using the number of diffusion gradients that is clinically practical can be challenging. In this work, we propose a deep learning algorithm for EAP estimation, which is named learning-based ensemble average propagator estimation (LEAPE). The EAP is commonly represented by a basis and its associated coefficients, and here we choose the SHORE basis and design a deep network to estimate the coefficients. The network comprises two cascaded components. The first component is a multiple layer perceptron (MLP) that simultaneously predicts the unknown coefficients. However, typical training loss functions, such as mean squared errors, may not properly represent the geometry of the possibly non-Euclidean space of the coefficients, which in particular causes problems for the extraction of directional information from the EAP. Therefore, to regularize the training, in the second component we compute an auxiliary output of approximated fiber orientation (FO) errors with the aid of a second MLP that is trained separately. We performed experiments using dMRI data that resemble clinically achievable qq-space sampling, and observed promising results compared with the conventional EAP estimation method.Comment: Accepted by MICCAI 201

    A combined SEM, CV and EIS study of multi-layered porous ceramic reactors for flue gas purification

    Get PDF
    The effect of sintering temperature of 12-layered porous ceramic reactors (comprising 5 cells) was studied using scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The difference in microstructures of the reactors was evaluated by SEM. Additional information on the influence of sintering temperature on the properties of the reactors could be gained by the use of EIS. The present work has provided the first set of fundamental electrochemical data and their interpretation in terms of fabrication conditions, for the multi-layered porous ceramic reactors

    A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text

    Full text link
    When trained effectively, the Variational Autoencoder (VAE) is both a powerful language model and an effective representation learning framework. In practice, however, VAEs are trained with the evidence lower bound (ELBO) as a surrogate objective to the intractable marginal data likelihood. This approach to training yields unstable results, frequently leading to a disastrous local optimum known as posterior collapse. In this paper, we investigate a simple fix for posterior collapse which yields surprisingly effective results. The combination of two known heuristics, previously considered only in isolation, substantially improves held-out likelihood, reconstruction, and latent representation learning when compared with previous state-of-the-art methods. More interestingly, while our experiments demonstrate superiority on these principle evaluations, our method obtains a worse ELBO. We use these results to argue that the typical surrogate objective for VAEs may not be sufficient or necessarily appropriate for balancing the goals of representation learning and data distribution modeling.Comment: EMNLP 2019 short paper. The first two authors contributed equall
    • …
    corecore