2,004 research outputs found
On the energy momentum dispersion in the lattice regularization
For a free scalar boson field and for U(1) gauge theory finite volume
(infrared) and other corrections to the energy-momentum dispersion in the
lattice regularization are investigated calculating energy eigenstates from the
fall off behavior of two-point correlation functions. For small lattices the
squared dispersion energy defined by is in both cases
negative ( is the Euclidean space-time dimension and the
energy of momentum eigenstates). Observation of has
been an accepted method to demonstrate the existence of a massless photon
() in 4D lattice gauge theory, which we supplement here by a study of
its finite size corrections. A surprise from the lattice regularization of the
free field is that infrared corrections do {\it not} eliminate a difference
between the groundstate energy and the mass parameter of the free
scalar lattice action. Instead, the relation is
derived independently of the spatial lattice size.Comment: 9 pages, 2 figures. Parts of the paper have been rewritten and
expanded to clarify the result
Fiber Orientation Estimation Guided by a Deep Network
Diffusion magnetic resonance imaging (dMRI) is currently the only tool for
noninvasively imaging the brain's white matter tracts. The fiber orientation
(FO) is a key feature computed from dMRI for fiber tract reconstruction.
Because the number of FOs in a voxel is usually small, dictionary-based sparse
reconstruction has been used to estimate FOs with a relatively small number of
diffusion gradients. However, accurate FO estimation in regions with complex FO
configurations in the presence of noise can still be challenging. In this work
we explore the use of a deep network for FO estimation in a dictionary-based
framework and propose an algorithm named Fiber Orientation Reconstruction
guided by a Deep Network (FORDN). FORDN consists of two steps. First, we use a
smaller dictionary encoding coarse basis FOs to represent the diffusion
signals. To estimate the mixture fractions of the dictionary atoms (and thus
coarse FOs), a deep network is designed specifically for solving the sparse
reconstruction problem. Here, the smaller dictionary is used to reduce the
computational cost of training. Second, the coarse FOs inform the final FO
estimation, where a larger dictionary encoding dense basis FOs is used and a
weighted l1-norm regularized least squares problem is solved to encourage FOs
that are consistent with the network output. FORDN was evaluated and compared
with state-of-the-art algorithms that estimate FOs using sparse reconstruction
on simulated and real dMRI data, and the results demonstrate the benefit of
using a deep network for FO estimation.Comment: A shorter version is accepted by MICCAI 201
Monte Carlo Simulation of the Three-dimensional Ising Spin Glass
We study the 3D Edwards-Anderson model with binary interactions by Monte
Carlo simulations. Direct evidence of finite-size scaling is provided, and the
universal finite-size scaling functions are determined. Using an iterative
extrapolation procedure, Monte Carlo data are extrapolated to infinite volume
up to correlation length \xi = 140. The infinite volume data are consistent
with both a continuous phase transition at finite temperature and an essential
singularity at finite temperature. An essential singularity at zero temperature
is excluded.Comment: 5 pages, 6 figures. Proceedings of the Workshop "Computer Simulation
Studies in Condensed Matter Physics XII", Eds. D.P. Landau, S.P. Lewis, and
H.B. Schuettler, (Springer Verlag, Heidelberg, Berlin, 1999
Lateral transport of thermal capillary waves
We demonstrate that collective motion of interfacial fluctuations can occur
at the interface between two coexisting thermodynamic phases. Based on computer
simulation results for driven diffusive Ising and Blume-Capel models, we
conjecture that the thermal capillary waves at a planar interface travel along
the interface if the lateral order parameter current j_op(y) is an odd function
of the distance y from the interface and hence possesses opposite directions in
the two phases. Such motion does not occur if j_op(y) is an even function of y.
A discrete Gaussian interface model with effective dynamics exhibits similiar
transport phenomena but with a simpler dispersion relation. These findings open
up avenues for controlled interfacial transport on the nanoscale.Comment: 4 pages, 6 figure
SO(3) versus SU(2) lattice gauge theory
We consider the SO(3) lattice gauge theory at weak coupling, in the Villain
action. We exhibit an analytic path in coupling space showing the equivalence
of the SO(3) theory with SU(2) summed over all twist sectors. This clarifies
the ``mysterious phase'' of SO(3). As order parameter, we consider the dual
string tension or center vortex free energy, which we measure in SO(3) using
multicanonical Monte Carlo. This allows us to set the scale, indicating that
lattices are necessary to probe the confined phase. We
consider the relevance of our findings for confinement in other gauge groups
with trivial center.Comment: 12 pages, 6 figures, to appear in the Proceedings of the NATO
workshop on "Confinement, Topology, and other Non-Perturbative Aspects of
QCD", Stara Lesna, Feb. 200
Chemotactic response and adaptation dynamics in Escherichia coli
Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia
coli is integral for detecting chemicals over a wide range of background
concentrations, ultimately allowing cells to swim towards sources of attractant
and away from repellents. Its biochemical mechanism based on methylation and
demethylation of chemoreceptors has long been known. Despite the importance of
adaptation for cell memory and behavior, the dynamics of adaptation are
difficult to reconcile with current models of precise adaptation. Here, we
follow time courses of signaling in response to concentration step changes of
attractant using in vivo fluorescence resonance energy transfer measurements.
Specifically, we use a condensed representation of adaptation time courses for
efficient evaluation of different adaptation models. To quantitatively explain
the data, we finally develop a dynamic model for signaling and adaptation based
on the attractant flow in the experiment, signaling by cooperative receptor
complexes, and multiple layers of feedback regulation for adaptation. We
experimentally confirm the predicted effects of changing the enzyme-expression
level and bypassing the negative feedback for demethylation. Our data analysis
suggests significant imprecision in adaptation for large additions.
Furthermore, our model predicts highly regulated, ultrafast adaptation in
response to removal of attractant, which may be useful for fast reorientation
of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript
(19 pages, 5 figures) and supplementary information; added additional
clarification on alternative adaptation models in supplementary informatio
Discrete approaches to quantum gravity in four dimensions
The construction of a consistent theory of quantum gravity is a problem in
theoretical physics that has so far defied all attempts at resolution. One
ansatz to try to obtain a non-trivial quantum theory proceeds via a
discretization of space-time and the Einstein action. I review here three major
areas of research: gauge-theoretic approaches, both in a path-integral and a
Hamiltonian formulation, quantum Regge calculus, and the method of dynamical
triangulations, confining attention to work that is strictly four-dimensional,
strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the
author welcomes any comments and suggestion
A Terminal Velocity on the Landscape: Particle Production near Extra Species Loci in Higher Dimensions
We investigate particle production near extra species loci (ESL) in a higher
dimensional field space and derive a speed limit in moduli space at weak
coupling. This terminal velocity is set by the characteristic ESL-separation
and the coupling of the extra degrees of freedom to the moduli, but it is
independent of the moduli's potential if the dimensionality of the field space
is considerably larger than the dimensionality of the loci, D >> d. Once the
terminal velocity is approached, particles are produced at a plethora of nearby
ESLs, preventing a further increase in speed via their backreaction. It is
possible to drive inflation at the terminal velocity, providing a
generalization of trapped inflation with attractive features: we find that more
than sixty e-folds of inflation for sub-Planckian excursions in field space are
possible if ESLs are ubiquitous, without fine tuning of initial conditions and
less tuned potentials. We construct a simple, observationally viable model with
a slightly red scalar power-spectrum and suppressed gravitational waves; we
comment on the presence of additional observational signatures originating from
IR-cascading and individual massive particles. We also show that
moduli-trapping at an ESL is suppressed for D >> d, hindering dynamical
selection of high-symmetry vacua on the landscape based on this mechanism.Comment: 46 pages, 6 figures. V3: typos corrected compared to JHEP version,
conclusions unchange
- …