32,954 research outputs found

    Non-Perturbative U(1) Gauge Theory at Finite Temperature

    Full text link
    For compact U(1) lattice gauge theory (LGT) we have performed a finite size scaling analysis on NτNs3N_{\tau} N_s^3 lattices for NτN_{\tau} fixed by extrapolating spatial volumes of size Ns≤18N_s\le 18 to Ns→∞N_s\to\infty. Within the numerical accuracy of the thus obtained fits we find for Nτ=4N_{\tau}=4, 5 and~6 second order critical exponents, which exhibit no obvious NτN_{\tau} dependence. The exponents are consistent with 3d Gaussian values, but not with either first order transitions or the universality class of the 3d XY model. As the 3d Gaussian fixed point is known to be unstable, the scenario of a yet unidentified non-trivial fixed point close to the 3d Gaussian emerges as one of the possible explanations.Comment: Extended version after referee reports. 6 pages, 6 figure

    Configuration Space for Random Walk Dynamics

    Full text link
    Applied to statistical physics models, the random cost algorithm enforces a Random Walk (RW) in energy (or possibly other thermodynamic quantities). The dynamics of this procedure is distinct from fixed weight updates. The probability for a configuration to be sampled depends on a number of unusual quantities, which are explained in this paper. This has been overlooked in recent literature, where the method is advertised for the calculation of canonical expectation values. We illustrate these points for the 2d2d Ising model. In addition, we proof a previously conjectured equation which relates microcanonical expectation values to the spectral density.Comment: Various minor changes, appendix added, Fig. 2 droppe

    Structure of the Energy Landscape of Short Peptides

    Full text link
    We have simulated, as a showcase, the pentapeptide Met-enkephalin (Tyr-Gly-Gly-Phe-Met) to visualize the energy landscape and investigate the conformational coverage by the multicanonical method. We have obtained a three-dimensional topographic picture of the whole energy landscape by plotting the histogram with respect to energy(temperature) and the order parameter, which gives the degree of resemblance of any created conformation with the global energy minimum (GEM).Comment: 17 pages, 4 figure

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Generalized-ensemble Monte carlo method for systems with rough energy landscape

    Full text link
    We present a novel Monte Carlo algorithm which enhances equilibrization of low-temperature simulations and allows sampling of configurations over a large range of energies. The method is based on a non-Boltzmann probability weight factor and is another version of the so-called generalized-ensemble techniques. The effectiveness of the new approach is demonstrated for the system of a small peptide, an example of the frustrated system with a rugged energy landscape.Comment: Latex; ps-files include

    Rugged Metropolis Sampling with Simultaneous Updating of Two Dynamical Variables

    Full text link
    The Rugged Metropolis (RM) algorithm is a biased updating scheme, which aims at directly hitting the most likely configurations in a rugged free energy landscape. Details of the one-variable (RM1_1) implementation of this algorithm are presented. This is followed by an extension to simultaneous updating of two dynamical variables (RM2_2). In a test with Met-Enkephalin in vacuum RM2_2 improves conventional Metropolis simulations by a factor of about four. Correlations between three or more dihedral angles appear to prevent larger improvements at low temperatures. We also investigate a multi-hit Metropolis scheme, which spends more CPU time on variables with large autocorrelation times.Comment: 8 pages, 5 figures. Revisions after referee reports. Additional simulations for temperatures down to 220
    • …
    corecore