2 research outputs found
Variations in glycosylation of von Willebrand factor with O-linked sialylated T antigen are associated with its plasma levels
The glycosylation profile of von Willebrand factor (VWF) is known to strongly influence its plasma levels. VWF contains several carbohydrate structures, including O-linked glycans that primarily consist of sialylated T antigen (NeuAc(α2-3)Gal-(β1-3)-[NeuAc(α2-6)]GalNAc). It is not yet known whether O-linked carbohydrates affect VWF levels. We developed an immunosorbent assay based on neuraminidase incubation allowing subsequent binding of peanut agglutinin (PNA) to desialylatedO-linked T antigen on VWF. An inverse relation was found between PNA binding and VWF antigen levels in healthy individuals (n = 111; Pearson rank - -0.43; P < .001). A similar inverse association was observed in randomly selected plasma samples from our diagnostic laboratory: 252% ± 125% for VWF levels less than 0.5 U/mL (n = 15); 131% ± 36% for VWF levels between 0.5 and 1.5 U/mL (n = 32); and 92% ± 40% for VWF levels more than 1.5 U/mL (n = 19). Reduced or increased PNA binding was also observed in patients with increased (liver cirrhosis) or reduced (von Willebrand disease [VWD] type 1) VWF antigen levels, respectively. VWD type 1 patients further displayed increased ratios of propeptide over mature VWF antigen levels (0.38 ± 0.18 versus 0.17 ± 0.03 for patients and controls, respectively; P < .001), which is indicative of reduced VWF survival in these patients. Of interest, a linear relation between PNA binding and propeptide/VWF ratio was observed (Spearman rank = 0.47), suggesting a potential association between O-linked glycosylation and VWF survival. Finally, we detected a marked decrease in PNA binding in post-DDAVP (1-deamino-8-D- arginine vasopressin) samples from various patients, indicating that the O-linked glycosylation profile of VWF stored in endothelial storage organelles may differ from circulating VWF
The negative impact of being underweight and weight loss on survival of children with acute lymphoblastic leukemia
Body mass index and change in body mass index during treatment may influence treatment outcome of pediatric patients with acute lymphoblastic leukemia. However, previous studies in pediatric acute lymphoblastic leukemia reported contradictory results. We prospectively collected data on body composition from a cohort of newly diagnosed Dutch pediatric patients with acute lymphoblastic leukemia (n=762, age 2-17 years). Patients were treated from 1997-2004 and the median follow-up was 9 years (range, 0-10). Body mass index at diagnosis was expressed as age- and gender-matched standard deviation scores and on the basis of these scores the patients were categorized as being underweight, of normal weight or overweight. Multivariate analyses showed that patients who were underweight (8%) had a higher risk of relapse [hazard ratio: 1.88, 95% confidence interval (1.13-3.13)], but similar overall survival and event-free survival as patients who had a normal weight or who were overweight. Patients with loss of body mass index during the first 32 weeks of treatment had a similar risk of relapse and eventfree survival, but decreased overall survival [hazard ratio: 2.10, 95% confidence interval (1.14-3.87)] compared to patients without a loss of body mass index. In addition, dual X-ray absorptiometry scans were performed in a nested, single-center cohort. Data from these scans revealed that a loss of body mass consisted mainly of a loss of lean body mass, while there was a gain in the percentage of fat. In conclusion, being underweight at diagnosis is a risk factor for relapse, and a decrease in body mass index early during treatment is associated with decreased survival. In addition, loss of body mass during treatment seems to consist mainly of a loss of lean body mass. This study was approved by the Medical Ethical Committee in 1996 (trial number NTR460/SNWLK-ALL-9)