439 research outputs found
Quantum geometrodynamics for black holes and wormholes
The geometrodynamics of the spherical gravity with a selfgravitating thin
dust shell as a source is constructed. The shell Hamiltonian constraint is
derived and the corresponding Schroedinger equation is obtained. This equation
appeared to be a finite differences equation. Its solutions are required to be
analytic functions on the relevant Riemannian surface. The method of finding
discrete spectra is suggested based on the analytic properties of the
solutions. The large black hole approximation is considered and the discrete
spectra for bound states of quantum black holes and wormholes are found. They
depend on two quantum numbers and are, in fact, quasicontinuous.Comment: Latex, 32 pages, 5 fig
Dynamics of a thin shell in the Reissner-Nordstrom metric
We describe the dynamics of a thin spherically symmetric gravitating shell in
the Reissner-Nordstrom metric of the electrically charged black hole. The
energy-momentum tensor of electrically neutral shell is modelled by the perfect
fluid with a polytropic equation of state. The motion of a shell is described
fully analytically in the particular case of the dust equation of state. We
construct the Carter-Penrose diagrams for the global geometry of the eternal
black hole, which illustrate all possible types of solutions for moving shell.
It is shown that for some specific range of initial parameters there are
possible the stable oscillating motion of the shell transferring it
consecutively in infinite series of internal universes. We demonstrate also
that this oscillating type of motion is possible for an arbitrary polytropic
equation of state on the shell.Comment: 17 pages, 7 figure
- …