23 research outputs found

    Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The outermost layer of the bacterial surface is of crucial importance because it is in constant interaction with the host. Glycopeptidolipids (GPLs) are major surface glycolipids present on various mycobacterial species. In the fast-grower model organism <it>Mycobacterium smegmatis</it>, GPL biosynthesis involves approximately 30 genes all mapping to a single region of 65 kb.</p> <p>Results</p> <p>We have recently sequenced the complete genomes of two fast-growers causing human infections, <it>Mycobacterium abscessus </it>(CIP 104536T) and <it>M. chelonae </it>(CIP 104535T). We show here that these two species contain genes corresponding to all those of the <it>M. smegmatis </it>"GPL locus", with extensive conservation of the predicted protein sequences consistent with the production of GPL molecules indistinguishable by biochemical analysis. However, the GPL locus appears to be split into several parts in <it>M. chelonae </it>and <it>M. abscessus</it>. One large cluster (19 genes) comprises all genes involved in the synthesis of the tripeptide-aminoalcohol moiety, the glycosylation of the lipopeptide and methylation/acetylation modifications. We provide evidence that a duplicated acetyltransferase (<it>atf1 </it>and <it>atf2</it>) in <it>M. abscessus </it>and <it>M. chelonae </it>has evolved through specialization, being able to transfer one acetyl at once in a sequential manner. There is a second smaller and distant (<it>M. chelonae</it>, 900 kb; <it>M. abscessus</it>, 3 Mb) cluster of six genes involved in the synthesis of the fatty acyl moiety and its attachment to the tripeptide-aminoalcohol moiety. The other genes are scattered throughout the genome, including two genes encoding putative regulatory proteins.</p> <p>Conclusion</p> <p>Although these three species produce identical GPL molecules, the organization of GPL genes differ between them, thus constituting species-specific signatures. An hypothesis is that the compact organization of the GPL locus in <it>M. smegmatis </it>represents the ancestral form and that evolution has scattered various pieces throughout the genome in <it>M. abscessus </it>and <it>M. chelonae</it>.</p

    Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis: effects on bacterial growth and biogenesis of functional type IV pili

    No full text
    Many proteins, especially membrane and exported proteins, are stabilized by intramolecular disulfide bridges between cysteine residues without which they fail to attain their native functional conformation. The formation of these bonds is catalyzed in Gram-negative bacteria by enzymes of the Dsb system. Thus, the activity of DsbA has been shown to be necessary for many phenotypes dependent on exported proteins, including adhesion, invasion, and intracellular survival of various pathogens. The Dsb system in Neisseria meningitidis, the causative agent of cerebrospinal meningitis, has not, however, been studied. In a previous work where genes specific to N. meningitidis and not present in the other pathogenic Neisseria were isolated, a meningococcus-specific dsbA gene was brought to light (Tinsley, C. R., and Nassif, X. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11109–11114). Inactivation of this gene, however, did not result in deficits in the phenotypes commonly associated with DsbA. A search of available genome data revealed that the meningococcus contains three dsbA genes encoding proteins with different predicted subcellular locations, i.e. a soluble periplasmic enzyme and two membrane-bound lipoproteins. Cell fractionation experiments confirmed the localization in the inner membrane of the latter two, which include the previously identified meningococcus-specific enzyme. Mutational analysis demonstrated that the deletion of any single enzyme was compensated by the action of the remaining two on bacterial growth, whereas the triple mutant was unable to grow at 37 °C. Remarkably, however, the combined absence of the two membrane-bound enzymes led to a phenotype of sensitivity to reducing agents and loss of functionality of the pili. Although in many species a single periplasmic DsbA is sufficient for the correct folding of various proteins, in the meningococcus a membrane-associated DsbA is required for a wild type DsbA+ phenotype even in the presence of a functional periplasmic DsbA

    Type-4 pili and meningococcal adhesiveness

    No full text
    International audienceThe ability to interact with non-phagocytic cells is a crucial virulence attribute of the meningococcus. Pili play a major role in this process and are the only means yet discovered by which capsulated bacteria may adhere to cells. Pilus-mediated adhesion is a two-step process which requires (i) the expression of the adhesin PilC1 and (ii) the expression of an appropriate pilin variant. Some pilin variants have the ability to modify the degree of adhesiveness through the formation of bundles of pili which increases bacteria-bacteria interactions

    Listeria monocytogenes: a Rare Complication of Ventriculoperitoneal Shunt in Children ▿

    No full text
    We report a case of ventriculoperitoneal (VP) shunt infection in a 3-year-old boy caused by the food-borne pathogen Listeria monocytogenes, subsequent to acute peritonitis. This unusual presentation of central nervous system (CNS) listeriosis underlines the ability of the bacteria to form and survive within biofilms on indwelling medical devices. Bacterial persistence may lead to treatment failure and spreading. We highlight the helpfulness of specific quantitative real-time PCR for the hly gene (PCR-hly) for the diagnosis and follow-up of such infections in detecting bacterial persistence within medical devices despite effective antibiotic treatment. Only the surgical replacement of the VP shunt will resolve the infection

    Molecular and Biological Analysis of Eight Genetic Islands That Distinguish Neisseria meningitidis from the Closely Related Pathogen Neisseria gonorrhoeae

    No full text
    The pathogenic species Neisseria meningitidis and Neisseria gonorrhoeae cause dramatically different diseases despite strong relatedness at the genetic and biochemical levels. N. meningitidis can cross the blood-brain barrier to cause meningitis and has a propensity for toxic septicemia unlike N. gonorrhoeae. We previously used subtractive hybridization to identify DNA sequences which might encode functions specific to bacteremia and invasion of the meninges because they are specific to N. meningitidis and absent from N. gonorrhoeae. In this report we show that these sequences mark eight genetic islands that range in size from 1.8 to 40 kb and whose chromosomal location is constant. Five of these genetic islands were conserved within a representative set of strains and/or carried genes with homologies to known virulence factors in other species. These were deleted, and the mutants were tested for correlates of virulence in vitro and in vivo. This strategy identified one island, region 8, which is needed to induce bacteremia in an infant rat model of meningococcal infection. Region 8 encodes a putative siderophore receptor and a disulfide oxidoreductase. None of the deleted mutants was modified in its resistance to the bactericidal effect of serum. Neither were the mutant strains altered in their ability to interact with endothelial cells, suggesting that such interactions are not encoded by large genetic islands in N. meningitidis
    corecore