5,294 research outputs found

    Quantum thermodynamic Carnot and Otto-like cycles for a two-level system

    Get PDF
    From the thermodynamic equilibrium properties of a two-level system with variable energy-level gap Δ\Delta, and a careful distinction between the Gibbs relation dE=TdS+(E/Δ)dΔdE = T dS + (E/\Delta) d\Delta and the energy balance equation dE=ήQ←−ήW→dE = \delta Q^\leftarrow - \delta W^\to, we infer some important aspects of the second law of thermodynamics and, contrary to a recent suggestion based on the analysis of an Otto-like thermodynamic cycle between two values of Δ\Delta of a spin-1/2 system, we show that a quantum thermodynamic Carnot cycle, with the celebrated optimal efficiency 1−(Tlow/Thigh)1 - (T_{low}/T_{high}), is possible in principle with no need of an infinite number of infinitesimal processes, provided we cycle smoothly over at least three (in general four) values of Δ\Delta, and we change Δ\Delta not only along the isoentropics, but also along the isotherms, e.g., by use of the recently suggested maser-laser tandem technique. We derive general bounds to the net-work to high-temperature-heat ratio for a Carnot cycle and for the 'inscribed' Otto-like cycle, and represent these cycles on useful thermodynamic diagrams.Comment: RevTex4, 4 pages, 1 figur

    Cables and fire hazards

    Get PDF
    Besides describing the experiments conducted to develop a nonflammable cable, this article discusses several considerations regarding other hazards which might result from cable fires, particularly the toxicity and opacity of the fumes emitted by the burning cable. In addition, this article examines the effects of using the Oxygen Index as a gauge of quality control during manufacture

    Thermodynamic analysis of turbulent combustion in a spark ignition engine. Experimental evidence

    Get PDF
    A method independent of physical modeling assumptions is presented to analyze high speed flame photography and cylinder pressure measurements from a transparent piston spark ignition research engine. The method involves defining characteristic quantities of the phenomena of flame propagation and combustion, and estimating their values from the experimental information. Using only the pressure information, the mass fraction curves are examined. An empirical burning law is presented which simulates such curves. Statistical data for the characteristics delay and burning angles which show that cycle to cycle fractional variations are of the same order of magnitude for both angles are discussed. The enflamed and burnt mass fractions are compared as are the rates of entrainment and burning

    Identifying a space dependent coefficient in a reaction-diffusion equation

    Get PDF
    We consider a reaction-diffusion equation for the front motion [u] in which the reaction term is given by [c(x)g(u)]. We formulate a suitable inverse problem for the unknowns [u] and [c], where [u] satisfies homogeneous Neumann boundary conditions and the additional condition is of integral type on the time interval [[0,T]]. Uniqueness of the solution is proved in the case of a linear [g]. Assuming [g] non linear, we show uniqueness for large [T]

    Electrons diffusion and signal noise contributions on electron clusters detection efficiency

    Get PDF
    The Cluster Counting (CC) technique, proposed for dE/dx measurements with the SuperB drift-chamber, could, significantly, improve particle identification by avoiding the fluctuations involved in charge measurements. As the technique is quite sensitive to the detector working conditions and to the front-end chain response, in this note we have investigated the effects on clusters detection efficiency of electron diffusion, preamplifier frequencyresponse and Signal-to-Noise Ratio (SNR) using different algorithms. The evaluation is based on Garfield datasets, generated for a single cell geometry, at different impact points for π /”/e particles with momenta 120, 140, 160, 180 and 210 MeV. The current waveforms generated by Garfield have been shaped according to the preamplifier response and different amounts of white gaussian noise has been added to the waveforms to simulate different SNRs. Finally an estimation of π /”/e separation is shown

    Combustion and operating characteristics of spark-ignition engines

    Get PDF
    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined

    Analysis of Fatigue Strength of L-PBF AlSi10Mg with Different Surface Post-Processes: Effect of Residual Stresses

    Get PDF
    Space and aerospace industries has been starting in the recent years the replacement process of parts and components obtained by traditional manufacturing processes with those produced by Additive Manufacturing (AM). The complexity of the obtainable parts makes, in general, challenging the superficial post processing of some zones, making a stringent requirement the investigation of the fatigue performances of components with rough superficial state or machined. The aim of this work is then to analyse and compare the fatigue performances of an additively manufactured (AMed) AlSi10Mg material considering both the effects of the manufacturing defects and residual stresses related to three different superficial states, namely machined, net-shape and sandblasted. The residual stress profiles of the three superficial states were found to play a key role in determining the fatigue properties of the analysed material, while the manufacturing defects at the failure origin were found to be comparable among the three series. To take into account the combined effect of residual stresses and manufacturing defects a fracture mechanics approach was considered for the estimation of the fatigue performances in both infinite and finite life regimes. It was found that by considering the nominal measured residual stress profiles in the fracture mechanics model the estimations were satisfactory compared to the experimental data-point. To increase the accuracy of the fatigue life estimations a series of numerical analyses were performed aimed to investigate the residual stresses relaxation during the cyclic loading. The adoption of the relaxed residual stress profiles in the fracture mechanics model resulted in good estimations respect to the experimental data-points, highlighting the necessity in adopting such developed approaches during the design phase of AM parts and components

    Effects of climate change on the Nossana karst spring (northern Italy): future discharge projections and water distribution system sustainability

    Get PDF
    Nossana represents an important pre-Alpine karst spring located in Lombardy Region (Northern Italy). It is used for drinking supply and it sustains a water distribution system serving 300,000 people, including the city of Bergamo. The objective of this study was to project Nossana discharges, to evaluate potential supply limits for four future periods (2021-2040, 2041-2060, 2061-2080, 2081-2100). The study was carried out following a four-step approach. First, the EURO-CORDEX bias-corrected Regional Climate Models (RCMs) available for all the emission scenarios (RCP2.6, RCP4.5, RCP8.5) were evaluated in terms of precipitation and temperature monthly climatology. Second, they were statistically downscaled by means of change factors and a stochastic weather generator. Third, a rainfall-runoff model ensemble accounting also for snow dynamics (GR4J with CemaNeige module) was calibrated and validated on historical time series (1998-2017). Finally, the future downscaled time series were used as input in the calibrated model and the projected discharges evaluated in terms of low flow. In detail, two warning discharge thresholds - one for high water demand periods and one for ordinary water demand periods - were recognized with the service company managing the spring (Uniacque S.p.A.). Then, the number of (consecutive) days below them were calculated for each future period and compared to the historical time series. For each emission scenario, the calibrated model ensemble counted three RCMs and ten rainfall-runoff parameterizations. Projected ensemble mean discharges are lower than observations for all future periods and RCPs (from -3% for 2021-2040 and RCP4.5 to -23% for 2081-2100 and RCP8.5), although they do not show a clear trend between the four time periods. Days characterized by discharges lower than the warning thresholds are projected to decrease except for the RCP8.5 emission scenarios and the period 2081-2100 (14% increase for the ordinary-demand threshold, 10% increase for the high-demand threshold). Conversely, consecutive days are expected to increase between 2061 and 2100 for all emission scenarios and the two thresholds (by 0% and 26% for RCP 2.6, by 8% and 15% for RCP 4.5, by 28% and 48% for RCP 8.5). These results reflect the projected precipitation trend, characterized by longer, drier summer periods and wetter autumns in comparison to today\u2019s climate. Also, they indicate the need to develop a plan for the research and use of alternative drinking water resources for the long-term period. Therefore, the proposed methodology demonstrated to deliver useful information for water management planning. Future studies are intended to focus on chemistry and isotopic composition of water

    Turbulent flame propagation and combustion in spark ignition engines

    Get PDF
    Pressure measurements synchronized with high-speed motion picture records of flame propagation have been made in a transparent piston engine. The data show that the initial expansion speed of the flame front is close to that of a laminar flame. As the flame expands, its speed rapidly accelerates to a quasi-steady value comparable with that of the turbulent velocity fluctuations in the unburned gas. During the quasi-steady propagation phase, a significant fraction of the gas behind the visible front is unburned. Final burnout of the charge may be approximated by an exponential decay in time. The data have been analyzed in a model independent way to obtain a set of empirical equations for calculating mass burning rates in spark ignition engines. The burning equations contain three parameters: the laminar burning speed s l, a characteristic speed u T, and a characteristic length l T. The laminar burning speed is known from laboratory measurements. Tentative correlations relating u T and l T to engine geometry and operating variables have been derived from the engine data. © 1983

    On the Reconstruction of Cavities in a Nonlinear Model Arising from Cardiac Electrophysiology

    Get PDF
    In this paper, we deal with the problem of determining perfectly insulating regions (cavities) from one boundary measurement in a nonlinear elliptic equation arising from cardiac electrophysiology. Based on the results obtained in [9] we propose a new reconstruction algorithm based on Gamma-convergence. The relevance and applicability of this approach are then shown through several numerical experiments
    • 

    corecore