13 research outputs found
SexTant: Visualizing Time-Evolving Linked Geospatial Data
We present SexTant, a Web-based system for the visualization and exploration of time-evolving linked geospatial data and the creation, sharing, and collaborative editing of "temporally-enriched" thematic maps which are produced by combining dierent sources of such data
From big data to big information and big knowledge: The case of Earth observation data
Some particularly important rich sources of open and free big geospatial data are the Earth observation (EO) programs of various countries such as the Landsat program of the US and the Copernicus programme of the European Union. EO data is a paradigmatic case of big data and the same is true for the big information and big knowledge extracted from it. EO data (satellite images and in-situ data), and the information and knowledge extracted from it, can be utilized in many applications with financial and environmental impact in areas such as emergency management, climate change, agriculture and security
Sextant: Visualizing time-evolving linked geospatial data
The linked open data cloud is constantly evolving as datasets get continuously updated with newer versions. As a result, representing, querying, and visualizing the temporal dimension of linked data is crucial. This is especially important for geospatial datasets that form the backbone of large scale open data publication efforts in many sectors of the economy (e.g., the public sector, the Earth Observation sector). Although there has been some work on the representation and querying of linked geospatial data that change over time, to the best of our knowledge, there is currently no tool that offers spatio-temporal visualization of such data. This is in contrast with the existence of many tools for the visualization of the temporal evolution of geospatial data in the GIS area. In this article, we present Sextant, a Web-based system for the visualization and exploration of time-evolving linked geospatial data and the creation, sharing, and collaborative editing of “temporally-enriched” thematic maps which are produced by combining different sources of such data. We present the architecture of Sextant, give examples of its use and present applications in which we have deployed it
Wildfire monitoring using satellite images, ontologies and linked geospatial data
Advances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation data archives have been constantly increasing in size in the last few years, and have become a valuable source of data for many scientific and application domains. When Earth Observation data is coupled with other data sources many pioneering applications can be developed. In this paper we show how Earth Observation data, ontologies, and linked geospatial data can be combined for the development of a wildfire monitoring service that goes beyond applications currently deployed in various Earth Observation data centers. The service has been developed in the context of European project TELEIOS that faces the challenges of extracting knowledge from Earth Observation data head-on, capturing this knowledge by semantic annotation encoded using Earth Observation ontologies, and combining these annotations with linked geospatial data to allow the development of interesting applications
Improving knowledge discovery from synthetic aperture radar images using the linked open data cloud and Sextant
In the last few years, thanks to projects like TELEIOS, the linked open data cloud has been rapidly populated with geospatial data some of it describing Earth Observation products (e.g., CORINE Land Cover, Urban Atlas). The abundance of this data can prove very useful to the new missions (e.g., Sentinels) as a means to increase the usability of the millions of images and EO products that are expected to be produced by these missions. In this paper, we explain the relevant opportunities by demonstrating how the process of knowledge discovery from TerraSAR-X images can be improved using linked open data and Sextant, a tool for browsing and exploration of linked geospatial data, as well as the creation of thematic maps
Managing big, linked, and open earth-observation data: Using the TELEIOS/LEO software stack
Big Earth-observation (EO) data that are made freely available by space agencies come from various archives. Therefore, users trying to develop an application need to search within these archives, discover the needed data, and integrate them into their application. In this article, we argue that if EO data are published using the linked data paradigm, then the data discovery, data integration, and development of applications becomes easier. We present the life cycle of big, linked, and open EO data and show how to support their various stages using the software stack developed by the European Union (EU) research projects TELEIOS and the Linked Open EO Data for Precision Farming (LEO). We also show how this stack of tools can be used to implement an operational wildfire-monitoring service
Real-Time Wildfire Monitoring Using Scientific Database and Linked Data Technologies
We present a real-time wildfire monitoring service that exploits satellite images and linked geospatial data to detect hotspots and monitor the evolution of fire fronts. The service makes heavy use of scientific database technologies (array databases, SciQL, data vaults) and linked data technologies (ontologies, linked geospatial data, stSPARQL) and is implemented on top of MonetDB and Strabon. The service is now operational at the National Observatory of Athens and has been used during the previous summer by emergency managers monitoring wildfires in Greece
Building Virtual Earth Observatories using Ontologies and Linked Geospatial Data
TELEIOS is a European project that addresses the need for scalable access to petabytes of Earth Observation data and the discovery of knowledge that can be used in applications. To achieve this, TELEIOS builds on scientific database technologies (array databases, SciQL, data vaults), Semantic Web technologies (stRDF and stSPARQL) and linked geospatial data. In this technical communication we outline the TELEIOS advancements to the state of the art and give an overview of its technical contributions up to today