30 research outputs found

    Adjoint Trapping: A New Phenomenon at Strong 't Hooft Coupling

    Full text link
    Adding matter of mass m, in the fundamental representation of SU(N), to N=4 supersymmetric Yang-Mills theory, we study ``generalized quarkonium'' containing a (s)quark, an anti(s)quark, and J massless (or very light) adjoint particles. At large 't Hooft coupling λ\lambda >> 1, the states of spin <= 1 are surprisingly light (Kruczenski et al., hep-th/0304032) and small (hep-th/0312071) with a J-independent size of order λ/m\sqrt{\lambda}/m. This ``trapping'' of adjoint matter in a region small compared with its Compton wavelength and compared to any confinement scale in the theory is an unfamiliar phenomenon, as it does not occur at small λ\lambda. We explore adjoint trapping further by considering the limit of large J. In particular, for J >> λ\sqrt{\lambda} >> 1, we expect the trapping phenomenon to become unstable. Using Wilson loop methods, we show that a sharp transition, in which the generalized quarkonium states become unbound (for massless adjoints) occurs at J≃0.22λJ \simeq 0.22 \sqrt{\lambda}. If the adjoint scalars of N=4 are massive and the theory is confining (as, for instance, in N=1* theories) then the transition becomes a cross-over, across which the size of the states changes rapidly from ~λ/m\sqrt{\lambda}/m to something of order the confinement scale ~ Λ−1\Lambda^{-1}.Comment: Clarified transition with a better figure and improved presentation; added careful discussion of the small regime of validity of the Born-Oppenheimer computation and adjusted some remarks appropriately; also added two reference

    On the pp-wave limit and the BMN structure of new Sasaki-Einstein spaces

    Get PDF
    We construct the pp-wave string associated with the Penrose limit of Yp,qY^{p,q} and Lp,q,rL^{p,q,r} families of Sasaki-Einstein geometries. We identify in the dual quiver gauge theories the chiral and the non-chiral operators that correspond to the ground state and the first excited states. We present an explicit identification in a prototype model of L1,7,3L^{1,7,3}.Comment: 21 pages, JHEP format, 5 figures, acknowledgement correcte

    String Theory on Dp-plane waves

    Get PDF
    We study the spectrum of solvable string models on plane waves descending from non-conformal Dp-brane geometries. We mainly focus on S-dual F1/D1-waves in type IIB and type I/heterotic 10D superstrings. We derive the Kaluza-Klein spectrum of N=1,2 10D supergravities on D1/F1-waves. We compute helicity supertraces counting multiplicities and R-charges of string excitations in the plane wave geometry. The results are compared against the expectations coming from gauge/supergravity descriptions. In the type I case, the Klein, Annulus and Moebius one-loop amplitudes are computed for ten-dimensional D1-waves. We test the consistency of the open string descendant by showing that after modular transformations to the closed string channel, the three amplitudes combine themselves to reconstruct a complete square (|B>+|C>)^2. Tadpole conditions are also discussed.Comment: 22 pages, Minor corrections, References adde

    On Penrose limit of elliptic branes

    Full text link
    We discuss a Penrose limit of an elliptic brane configuration with N1N_1 NS5 and N2N_2 D4 branes. This background is T-dual to N1N_1 D3 branes at a fixed point of a C3/ZN2\mathbf{C}^3/\mathbf{Z}_{N_2} singularity and the T-duality survives the Penrose limit. The triple scaling limit of N1N_1 and N2N_2 gives rise to IIA pp-wave solution with a space-like compact direction. We identify the quiver gauge theory operators and argue that upon exchange of the momentum along the compact direction and the winding number these operators coincide with the operators derived in the dual type IIB description. We also find a new Penrose limit of the type IIB background and the corresponding limit in the type IIA picture. In the coordinate system we use there are two manifest space-like isometries. The quiver gauge theory operator duals of the string states are built of three bosonic fields.Comment: 25 pages with 1 figur

    Bubbling Orientifolds

    Get PDF
    We investigate a class of 1/2-BPS bubbling geometries associated to orientifolds of type IIB string theory and thereby to excited states of the SO(N)/Sp(N) N=4 supersymmetric Yang-Mills theory. The geometries are in correspondence with free fermions moving in a harmonic oscillator potential on the half-line. Branes wrapped on torsion cycles of these geometries are identified in the fermi fluid description. Besides being of intrinsic interest, these solutions may also occur as local geometries in flux compactifications where orientifold planes are present to ensure global charge cancellation. We comment on the extension of this procedure to M-theory orientifolds.Comment: 25 pages, 11 figures. v2: few references adde

    Strings on pp-waves and Hadrons in (softly broken) N=1 gauge theories

    Full text link
    We study the Penrose limit of Type IIB duals of softly broken N=1 SU(N) gauge theories in four dimensions, obtained as deformations of the Maldacena-Nunez and Klebanov-Strassler backgrounds. We extract the string spectrum on the resulting pp-wave backgrounds and discuss some properties of the conjectured dual gauge theory hadrons, the so called "Annulons". The string zero-point energy on the light-cone is nontrivial, due to the loss of linearly realized worldsheet supersymmetry, and negative, even in the unbroken supersymmetric case. This causes the appearance of non-perturbative corrections to the hadronic mass spectrum. We briefly discuss the thermodynamic behavior of these string models, calculating the corresponding Hagedorn temperatures.Comment: 20 page

    On the Couplings of Vector Mesons in AdS/QCD

    Full text link
    We address, in the AdS/CFT context, the issue of the universality of the couplings of the rho meson to other hadrons. Exploring some models, we find that generically the rho-dominance prediction f_\rho g_{\rho H H}=m_\rho^2 does not hold, and that g_{\rho H H} is not independent of the hadron H. However, we prove that, in any model within the AdS/QCD context, there are two limiting regimes where the g_{\rho H H}, along with the couplings of all excited vector mesons as well, become H-independent: (1) when H is created by an operator of large dimension, and (2) when H is a highly-excited hadron. We also find a sector of a particular model where universality for the rho coupling is exact. Still, in none of these cases need it be true that f_\rho g_\rho=m_\rho^2, although we find empirically that the relation does hold approximately (up to a factor of order two) within the models we have studied.Comment: 28 pages, 3 figures. ver 2: Comments about the commutability of two universal limits in the D3/D7 case corrected. Typos corrected. ver 3: Substantive revisions of certain calculations, with improved conventions, correction of typos, clarifications, new formulas, new figures; no changes in essential results or conclusion

    The causal boundary of wave-type spacetimes

    Full text link
    A complete and systematic approach to compute the causal boundary of wave-type spacetimes is carried out. The case of a 1-dimensional boundary is specially analyzed and its critical appearance in pp-wave type spacetimes is emphasized. In particular, the corresponding results obtained in the framework of the AdS/CFT correspondence for holography on the boundary, are reinterpreted and very widely generalized. Technically, a recent new definition of causal boundary is used and stressed. Moreover, a set of mathematical tools is introduced (analytical functional approach, Sturm-Liouville theory, Fermat-type arrival time, Busemann-type functions).Comment: 41 pages, 1 table. Included 4 new figures, and some small modifications. To appear in JHE

    On zero-point energy, stability and Hagedorn behavior of Type IIB strings on pp-waves

    Full text link
    Type IIB strings on many pp-wave backgrounds, supported either by 5-form or 3-form fluxes, have negative light-cone zero-point energy. This raises the question of their stability and poses possible problems in the definition of their thermodynamic properties. After having pointed out the correct way of calculating the zero-point energy, an issue not fully discussed in literature, we show that these Type IIB strings are classically stable and have well defined thermal properties, exhibiting a Hagedorn behavior.Comment: Latex, 13 pages. v2: regularization/renormalization prescription clarified, refs. adde

    A Soluble String Theory of Hadrons

    Get PDF
    We consider Penrose limits of the Klebanov-Strassler and Maldacena-Nunez holographic duals to N =1 supersymmetric Yang-Mills. By focusing in on the IR region we obtain exactly solvable string theory models. These represent the nonrelativistic motion and low-lying excitations of heavy hadrons with mass proportional to a large global charge. We argue that these hadrons, both physically and mathematically, take the form of heavy nonrelativistic strings; we term them "annulons." A simple toy model of a string boosted along a compact circle allows us considerable insight into their properties. We also calculate the Wilson loop carrying large global charge and show the effect of confinement is quadratic, not linear, in the string tension.Comment: 40 pages, 1 figure; v2: typos correcte
    corecore