1,134 research outputs found

    Higher su(N) tensor products

    Full text link
    We extend our recent results on ordinary su(N) tensor product multiplicities to higher su(N) tensor products. Particular emphasis is put on four-point couplings where the tensor product of four highest weight modules is considered. The number of times the singlet occurs in the decomposition is the associated multiplicity. In this framework, ordinary tensor products correspond to three-point couplings. As in that case, the four-point multiplicity may be expressed explicitly as a multiple sum measuring the discretised volume of a convex polytope. This description extends to higher-point couplings as well. We also address the problem of determining when a higher-point coupling exists, i.e., when the associated multiplicity is non-vanishing. The solution is a set of inequalities in the Dynkin labels.Comment: 17 pages, LaTe

    Black Hole Production from High Energy Scattering in AdS/CFT

    Full text link
    In this article we show how to set up initial states in N=4{\cal N} =4 SYM theory that correspond to high energy graviton collisions, leading to black hole formation in AdS5×S5AdS_5\times S^5. For this purpose, we study states in the gauge theory that are dual to graviton wavepackets localized at the center of AdS5AdS_5, and carrying large angular momentum along the S5S^5. These states are created by exciting only the s-wave mode of one of the complex adjoint scalars of SYM. For a single graviton, the state is 1/2 BPS and one can show that it is dual to a linearized 1/2 BPS geometry in the bulk. Exploiting this dictionary, we show how to localize the particle's wavefunciton so that the dual linearized metric has the form of a Aichelburg-Sexl shock wave. One can then put two such shock waves into a head-on collision, which is known to produce a trapped surface. Finally, we discuss the prospect of studying graviton scattering directly at strong coupling in the gauge theory using a reduced model of matrix quantum mechanics.Comment: 11 pages, revtex format, no figure

    Multi-matrix models and emergent geometry

    Full text link
    Encouraged by the AdS/CFT correspondence, we study emergent local geometry in large N multi-matrix models from the perspective of a strong coupling expansion. By considering various solvable interacting models we show how the emergence or non-emergence of local geometry at strong coupling is captured by observables that effectively measure the mass of off-diagonal excitations about a semiclassical eigenvalue background. We find emergent geometry at strong coupling in models where a mass term regulates an infrared divergence. We also show that our notion of emergent geometry can be usefully applied to fuzzy spheres. Although most of our results are analytic, we have found numerical input valuable in guiding and checking our results.Comment: 1+34 pages, 4 figures. References adde

    Strings on conifolds from strong coupling dynamics, part I

    Full text link
    A method to solve various aspects of the strong coupling expansion of the superconformal field theory duals of AdS_5 x X geometries from first principles is proposed. The main idea is that at strong coupling the configurations that dominate the low energy dynamics of the field theory compactified on a three sphere are given by certain non-trivial semi-classical configurations in the moduli space of vacua. We show that this approach is self-consistent and permits one to express most of the dynamics in terms of an effective N=4 SYM dynamics. This has the advantage that some degrees of freedom that move the configurations away from moduli space can be treated perturbatively, unifying the essential low energy dynamics of all of these theories. We show that with this formalism one can compute the energies of strings in the BMN limit in the Klebanov-Witten theory from field theory considerations, matching the functional form of results found using AdS geometry. This paper also presents various other technical results for the semiclassical treatment of superconformal field theories.Comment: 52 pages, JHEP3 styl

    Aspects of ABJM orbifolds with discrete torsion

    Full text link
    We analyze orbifolds with discrete torsion of the ABJM theory by a finite subgroup Γ\Gamma of SU(2)×SU(2)SU(2)\times SU(2) . Discrete torsion is implemented by twisting the crossed product algebra resulting after orbifolding. It is shown that, in general, the order mm of the cocycle we chose to twist the algebra by enters in a non trivial way in the moduli space. To be precise, the M-theory fiber is multiplied by a factor of mm in addition to the other effects that were found before in the literature. Therefore we got a ZkΓm\mathbb{Z}_{\frac{k|\Gamma|}{m}} action on the fiber. We present a general analysis on how this quotient arises along with a detailed analysis of the cases where Γ\Gamma is abelian

    Logarithmic correction to scaling for multi-spin strings in the AdS_5 black hole background

    Full text link
    We find new explicit solutions describing closed strings spinning with equal angular momentum in two independent planes in the AdS5AdS_5 black hole spacetime. These are 2n2n folded strings in the radial direction and also winding mm times around an angular direction. We especially consider these solutions in the long string and high temperature limit, where it is shown that there is a logarithmic correction to the scaling between energy and spin. This is similar to the one-spin case. The strings are spinning, or actually orbiting around the black hole of the AdS5AdS_5 black hole spacetime, similarly to solutions previously found in black hole spacetimes.Comment: 11 pages, Final version, To appear in IJMP

    Open string axions and the flavor problem

    Full text link
    We consider extensions of the standard model inspired by intersecting D-brane constructions, in order to address flavor mass textures. We include additional anomalous gauge symmetries, and scalar fields to break them and to generate Froggatt-Nielsen mass terms. Green-Schwarz axions are included to cancel mixed anomalies rendering the models consistent. At low energies, a residual anomalous global symmetry remains, and its associated pseudo-Goldstone mode becomes the physical axion, which can be interpreted as an axion arising from open string modes. General considerations show that such axions are very common in D-brane models and can be completely incompatible with current bounds. Astrophysical constraints are placed on the axion both by including neutrino masses in the Froggatt-Nielsen scheme and considering QCD instanton contributions to the axion mass. We find simple models where the axion decay constant is in the allowed range, but only one such minimal model with this property is free from excessive fine tunings elsewhere. We also note that generically addressing flavor textures for the CKM matrix leads to deconstructed extra dimensions.Comment: 30 pages, 2 figures. v2: references added. v3:typos fixe

    A study of open strings ending on giant gravitons, spin chains and integrability

    Full text link
    We systematically study the spectrum of open strings attached to half BPS giant gravitons in the N=4 SYM AdS/CFT setup. We find that some null trajectories along the giant graviton are actually null geodesics of AdS_5x S^5, so that we can study the problem in a plane wave limit setup. We also find the description of these states at weak 't Hooft coupling in the dual CFT. We show how the dual description is given by an open spin chain with variable number of sites. We analyze this system in detail and find numerical evidence for integrability. We also discover an interesting instability of long open strings in Ramond-Ramond backgrounds that is characterized by having a continuum spectrum of the string, which is separated from the ground state by a gap. This instability arises from accelerating the D-brane on which the strings end via the Ramond-Ramond field. From the integrable spin chain point of view, this instability prevents us from formulating the integrable structure in terms of a Bethe Ansatz construction.Comment: 38 pages+appendices, 9 figures. Uses JHEP3. v2: added reference

    A Monte-Carlo study of the AdS/CFT correspondence: an exploration of quantum gravity effects

    Get PDF
    In this paper we study the AdS/CFT correspondence for N=4 SYM with gauge group U(N), compactified on S^3 in four dimensions using Monte-Carlo techniques. The simulation is based on a particular reduction of degrees of freedom to commuting matrices of constant fields, and in particular, we can write the wave functions of these degrees of freedom exactly. The square of the wave function is equivalent to a probability density for a Boltzman gas of interacting particles in six dimensions. From the simulation we can extract the density particle distribution for each wave function, and this distribution can be interpreted as a special geometric locus in the gravitational dual. Studying the wave functions associated to half-BPS giant gravitons, we are able to show that the matrix model can measure the Planck scale directly. We also show that the output of our simulation seems to match various theoretical expectations in the large N limit and that it captures 1/N effects as statistical fluctuations of the Boltzman gas with the expected scaling. Our results suggest that this is a very promising approach to explore quantum corrections and effects in gravitational physics on AdS spaces.Comment: 40 pages, 7 figures, uses JHEP. v2: references adde

    Mass-Gaps and Spin Chains for (Super) Membranes

    Get PDF
    We present a method for computing the non-perturbative mass-gap in the theory of Bosonic membranes in flat background spacetimes with or without background fluxes. The computation of mass-gaps is carried out using a matrix regularization of the membrane Hamiltonians. The mass gap is shown to be naturally organized as an expansion in a 'hidden' parameter, which turns out to be 1d\frac{1}{d}: d being the related to the dimensionality of the background space. We then proceed to develop a large NN perturbation theory for the membrane/matrix-model Hamiltonians around the quantum/mass corrected effective potential. The same parameter that controls the perturbation theory for the mass gap is also shown to control the Hamiltonian perturbation theory around the effective potential. The large NN perturbation theory is then translated into the language of quantum spin chains and the one loop spectra of various Bosonic matrix models are computed by applying the Bethe ansatz to the one-loop effective Hamiltonians for membranes in flat space times. Apart from membranes in flat spacetimes, the recently proposed matrix models (hep-th/0607005) for non-critical membranes in plane wave type spacetimes are also analyzed within the paradigm of quantum spin chains and the Bosonic sectors of all the models proposed in (hep-th/0607005) are diagonalized at the one-loop level.Comment: 36 Page
    corecore