6 research outputs found

    Atomic calculations and search for variation of the fine structure constant in quasar absorption spectra

    Full text link
    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.Comment: 9 pages, 2 figures. Based on the talk at the Symposium on Atomic Physics: A Tribute to Walter Johnson, Notre Dame, 5 April 2008. Reference 26 is correcte

    Isotope shift calculations for atoms with one valence electron

    Full text link
    This work presents a method for the ab initio calculation of isotope shift in atoms and ions with one valence electron above closed shells. As a zero approximation we use relativistic Hartree-Fock and then calculate correlation corrections. The main motivation for developing the method comes from the need to analyse whether different isotope abundances in early universe can contribute to the observed anomalies in quasar absorption spectra. The current best explanation for these anomalies is the assumption that the fine structure constant, alpha, was smaller at early epoch. We test the isotope shift method by comparing the calculated and experimental isotope shift for the alkali and alkali-like atoms Na, MgII, K, CaII and BaII. The agreement is found to be good. We then calculate the isotope shift for some astronomically relevant transitions in SiII and SiIV, MgII, ZnII and GeII.Comment: 11 page

    Fine structure constant variation or spacetime anisotropy?

    No full text
    Recent observations on the quasar absorption spectra supply evidence for the variation of the fine structure constant α\alpha. In this paper, we propose another interpretation of the observational data on the quasar absorption spectra: a scenario with spacetime inhomogeneity and anisotropy. Maybe the spacetime is characterized by the Finsler geometry instead of the Riemann one. The Finsler geometry admits fewer symmetries than the Riemann geometry does. We investigate the Finslerian geodesic equations in the Randers spacetime (a special Finsler spacetime). It is found that the cosmological redshift in this spacetime deviates from the one in general relativity. The modification term to the redshift could be generally revealed as a monopole plus dipole function of spacetime locations and directions. We suggest that this modification corresponds to the spatial monopole and dipole of α\alpha variation in the quasar absorption spectra.Comment: 13 pages. To publish in EPJ

    Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock

    No full text
    corecore