9 research outputs found
Disc and wind in black hole X-ray binary MAXI J1820+070 observed through polarized light during its 2018 outburst
We describe the first complete polarimetric data set of the entire outburst of a low-mass black hole X-ray binary system and discuss the constraints for geometry and radiative mechanisms it imposes. During the decaying hard state, when the optical flux is dominated by the non-thermal component, the observed polarization is consistent with the interstellar values in all filters. During the soft state, the intrinsic polarization of the source is small, similar to 0.15 per cent in B and V filters, and is likely produced in the irradiated disc. A much higher polarization, reaching similar to 0.5 per cent in V and R filters, at a position angle of similar to 25 degrees observed in the rising hard state coincides in time with the detection of winds in the system. This angle coincides with the position angle of the jet. The detected optical polarization is best explained by scattering of the non-thermal (hot flow or jet base) radiation in an equatorial wind
Promise of persistent multi-messenger astronomy with the blazar oj 287
Successful observations of the seven predicted bremsstrahlung flares from the unique bright blazar OJ 287 firmly point to the presence of a nanohertz gravitational wave (GW) emitting supermassive black hole (SMBH) binary central engine. We present arguments for the continued monitoring of the source in several electromagnetic windows to firmly establish various details of the SMBH binary central engine description for OJ 287. In this article, we explore what more can be known about this system, particularly with regard to accretion and outflows from its two accretion disks. We mainly concentrate on the expected impact of the secondary black hole on the disk of the primary on 3 December 2021 and the resulting electromagnetic signals in the following years. We also predict the times of exceptional fades, and outline their usefulness in the study of the host galaxy. A spectral survey has been carried out, and spectral lines from the secondary were searched for but were not found. The jet of the secondary has been studied and proposals to discover it in future VLBI observations are mentioned. In conclusion, the binary black hole model explains a large number of observations of different kinds in OJ 287. Carefully timed future observations will be able to provide further details of its central engine. Such multi-wavelength and multidisciplinary efforts will be required to pursue multi-messenger nanohertz GW astronomy with OJ 287 in the coming decades
Complex variations in X-ray polarization in the X-ray pulsar LS V +44 17/RX J0440.9+4431
We report on Imaging X-ray polarimetry explorer (IXPE) observations of the Be-transient X-ray pulsar LS V +44 17/RX J0440.9+4431 made at two luminosity levels during the giant outburst in January- February 2023. Considering the observed spectral variability and changes in the pulse profiles, the source was likely caught in supercritical and subcritical states with significantly different emission-region geometry, associated with the presence of accretion columns and hot spots, respectively. We focus here on the pulse-phase-resolved polarimetric analysis and find that the observed dependencies of the polarization degree and polarization angle (PA) on the pulse phase are indeed drastically different for the two observations. The observed differences, if interpreted within the framework of the rotating vector model (RVM), imply dramatic variations in the spin axis inclination, the position angle, and the magnetic colatitude by tens of degrees within the space of just a few days. We suggest that the apparent changes in the observed PA phase dependence are predominantly related to the presence of an unpulsed polarized component in addition to the polarized radiation associated with the pulsar itself. We then show that the observed PA phase dependence in both observations can be explained with a single set of RVM parameters defining the pulsar s geometry. We also suggest that the additional polarized component is likely produced by scattering of the pulsar radiation in the equatorial disk wind
Recommended from our members
The First Post-Kepler Brightness Dips of KIC 8462852
We present a photometric detection of the first brightness dips of the unique
variable star KIC 8462852 since the end of the Kepler space mission in 2013
May. Our regular photometric surveillance started in October 2015, and a
sequence of dipping began in 2017 May continuing on through the end of 2017,
when the star was no longer visible from Earth. We distinguish four main 1-2.5%
dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on
timescales from several days to weeks. Our main results so far are: (i) there
are no apparent changes of the stellar spectrum or polarization during the
dips; (ii) the multiband photometry of the dips shows differential reddening
favoring non-grey extinction. Therefore, our data are inconsistent with dip
models that invoke optically thick material, but rather they are in-line with
predictions for an occulter consisting primarily of ordinary dust, where much
of the material must be optically thin with a size scale <<1um, and may also be
consistent with models invoking variations intrinsic to the stellar
photosphere. Notably, our data do not place constraints on the color of the
longer-term "secular" dimming, which may be caused by independent processes, or
probe different regimes of a single process
Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters
Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole (BBH) central engine of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the BBH model for OJ 287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the BBH central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287's central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole "no-hair theorem" at the 10% level
Stochastic Modeling of Multiwavelength Variability of the Classical BL Lac Object OJ287 on Timescales Ranging from Decades to Hours
We present the results of our power spectral density analysis for the BL Lac object OJ 287, utilizing the Fermi-LAT survey at high-energy.-rays, Swift-XRT in X-rays, several ground-based telescopes and the Kepler satellite in the optical, and radio telescopes at GHz frequencies. The light curves are modeled in terms of continuous-time autoregressive moving average (CARMA) processes. Owing to the inclusion of the Kepler data, we were able to construct for the first time the optical variability power spectrum of a blazar without any gaps across similar to 6 dex in temporal frequencies. Our analysis reveals that the radio power spectra are of a colored-noise type on timescales ranging from tens of years down to months, with no evidence for breaks or other spectral features. The overall optical power spectrum is also consistent with a colored noise on the variability timescales ranging from 117 years down to hours, with no hints of any quasi-periodic oscillations. The X-ray power spectrum resembles the radio and optical power spectra on the analogous timescales ranging from tens of years down to months. Finally, the.-ray power spectrum is noticeably different from the radio, optical, and X-ray power spectra of the source: we have detected a characteristic relaxation timescale in the Fermi-LAT data, corresponding to similar to 150 days, such that on timescales longer than this, the power spectrum is consistent with uncorrelated (white) noise, while on shorter variability timescales there is correlated (colored) noise
UV spectropolarimetry with Polstar: protoplanetary disks
Polstar is a proposed NASA MIDEX mission that carries a high resolution UV spectropolarimeter capable of measure all four Stokes parameters onboard a 60 cm telescope. The mission has been designed to pioneer the field of time-domain UV spectropolarimetry. Time domain UV spectropolarimetry offers the best resource to determine the geometry and physical conditions of protoplanetary disks from the stellar surface to <5 AU. We detail two key objectives that a dedicated time domain UV spectropolarimetry survey, such as that enabled by Polstar or a similar mission concept, could achieve: 1) Test the hypothesis that magneto-accretion operating in young planet-forming disks around lower-mass stars transitions to boundary layer accretion in planet-forming disks around higher mass stars; and 2) Discriminate whether transient events in the innermost regions of planet-forming disks of intermediate mass stars are caused by inner disk mis-alignments or from stellar or disk emissions
The first post-Kepler brightness dips of KIC 8462852
We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in 2015 October, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1%–2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor," which persist on timescales from several days to weeks. Our main results so far are as follows: (i) there are no apparent changes of the stellar spectrum or polarization during the dips and (ii) the multiband photometry of the dips shows differential reddening favoring non-gray extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale Lt1 μm, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process