83 research outputs found

    The academic backbone: longitudinal continuities in educational achievement from secondary school and medical school to MRCP(UK) and the specialist register in UK medical students and doctors

    Get PDF
    Background: Selection of medical students in the UK is still largely based on prior academic achievement, although doubts have been expressed as to whether performance in earlier life is predictive of outcomes later in medical school or post-graduate education. This study analyses data from five longitudinal studies of UK medical students and doctors from the early 1970s until the early 2000s. Two of the studies used the AH5, a group test of general intelligence (that is, intellectual aptitude). Sex and ethnic differences were also analyzed in light of the changing demographics of medical students over the past decades. Methods: Data from five cohort studies were available: the Westminster Study (began clinical studies from 1975 to 1982), the 1980, 1985, and 1990 cohort studies (entered medical school in 1981, 1986, and 1991), and the University College London Medical School (UCLMS) Cohort Study (entered clinical studies in 2005 and 2006). Different studies had different outcome measures, but most had performance on basic medical sciences and clinical examinations at medical school, performance in Membership of the Royal Colleges of Physicians (MRCP(UK)) examinations, and being on the General Medical Council Specialist Register. Results: Correlation matrices and path analyses are presented. There were robust correlations across different years at medical school, and medical school performance also predicted MRCP(UK) performance and being on the GMC Specialist Register. A-levels correlated somewhat less with undergraduate and post-graduate performance, but there was restriction of range in entrants. General Certificate of Secondary Education (GCSE)/O-level results also predicted undergraduate and post-graduate outcomes, but less so than did A-level results, but there may be incremental validity for clinical and post-graduate performance. The AH5 had some significant correlations with outcome, but they were inconsistent. Sex and ethnicity also had predictive effects on measures of educational attainment, undergraduate, and post-graduate performance. Women performed better in assessments but were less likely to be on the Specialist Register. Non-white participants generally underperformed in undergraduate and post-graduate assessments, but were equally likely to be on the Specialist Register. There was a suggestion of smaller ethnicity effects in earlier studies. Conclusions: The existence of the Academic Backbone concept is strongly supported, with attainment at secondary school predicting performance in undergraduate and post-graduate medical assessments, and the effects spanning many years. The Academic Backbone is conceptualized in terms of the development of more sophisticated underlying structures of knowledge ('cognitive capital’ and 'medical capital’). The Academic Backbone provides strong support for using measures of educational attainment, particularly A-levels, in student selection

    Studies on Approximation Methods in Calculating the Magnetic Dipolar Interaction Energy, and Its Impact on the Relaxation Time of Magnetic Nanoparticle Systems

    No full text
    The studies on monodomain magnetic nanoparticle systems in colloidal suspensions have heightened lately due to their technological applications, in particular in medicine. Most applications depend on the behaviour of these systems in external magnetic field. In these systems, the nanoparticle dynamics are characterized by the Néel relaxation time and Brownian relaxation time. Due to the complexity of these systems, modelling and numerical simulation, requiring some methods of calculation, are used in the studies. Lately, it has been experimentally and theoretically shown that the magnetic dipolar interactions among nanoparticles influence the behaviour of the systems, even at low concentrations of nanoparticles. The complexity of the problem related to this type of interaction comes from its long-range anisotropic characteristic. This paper presents a series of studies on how the approximation methods, used for the dipolar magnetic interaction energy calculation, affect the magnetic nanoparticle relaxation time, as well as the impact of this aspect on the interpretation of results

    Relaxation Times in Magnetic Nanoparticles System and Memory Effects

    No full text
    Some memory effects in nanoparticle systems, similar to those seen in spin glass systems, may have important device applications, by tuning the interaction and the particle size. Recently, this subject provoked a special interest in nano-sciences. In this work we present a study, by simulation of the mode in which the behavior of a magnetic nanoparticle system is influenced by the superposition of the dimensions' distribution, the effective anisotropy constants and the disposal of nanoparticles in the sample, if we take into account the dipolar magnetic interaction

    Relaxation Times in Magnetic Nanoparticles System and Memory Effects

    No full text
    Some memory effects in nanoparticle systems, similar to those seen in spin glass systems, may have important device applications, by tuning the interaction and the particle size. Recently, this subject provoked a special interest in nano-sciences. In this work we present a study, by simulation of the mode in which the behavior of a magnetic nanoparticle system is influenced by the superposition of the dimensions' distribution, the effective anisotropy constants and the disposal of nanoparticles in the sample, if we take into account the dipolar magnetic interaction
    corecore